一、栈和队列
- 队列:先进先出
- 栈:先进后出
栈的顺序存储 链式存储
限定性数据结构 - 栈与队列的特点
顺序栈实现
//定义栈的数据结构
#define MAXSIZE 20
typedef struct{ //SElemType类型根据实际情况而定,这里假设为int
SElemType data[MAXSIZE];
int top; //栈顶指针
}SqStack;
//构建一个空的栈
Status InitStack(SqStack *S){
S->top = -1; //top指针为-1 表示空栈
return OK;
}
//栈置空
Status ClearStack(SqStack *S){
S->top = -1;
return OK;
}
//判断栈是否为空
Status StackEmpty(SqStack S){
if(S->top == -1)
return TRUE;
return FALSE;
}
//获取栈的长度
int StackLength(SqStack S){
return S.top + 1;
}
//获取栈顶元素(不代表出栈)
Status GetTop(SqStack S,SElemType *e){
if(S.top == -1){
return ERROR;
}
*e = S.data[S.top];
return OK;
}
//压栈(入栈)
Status PushData(SqStack *S,SElemType e){
if(S->top == MAXSIZE -1 ) return ERROR; //判断是否满栈
S->top++;
S->data[S->top] = e;
return OK;
}
//出栈
Status PopData(SqStack *S,SElemType *e){
if(S->top == -1) return ERROR;
*e = S->data[S->top];
S->top--;
return OK;
}
//栈的遍历
Status StackTraverse(SqStack S){
int i = 0;
if(S.top == -1) return ERROR;
printf("Stack Element:");
while(i <= S.top){
printf("%d",S.data[i++]);
}
printf("\n");
return OK;
}
链式栈实现
//设计栈的结点
typedef Struct StackNode{
SElemType data;
struct StackNode *next;
}StackNode,*LinkStackPtr;
//设计栈结构
typedef struct{
LinkStactPtr top;
int count;
}LinkStack;
//构建空栈
Status InitStack(LinkStack *S){
S->top = (LinkStackPtr)malloc(sizeof(StackNode);
if(S->top == NULL) return ERROR;
S->top == NULL;
S->count = 0;
return OK;
}
//栈置空栈
Status ClearStack(LinkStack *S){
LinkStackPtr p,q;
p = S->top;
while(p){
q = p;
p=q->next;
free(q);
}
S->count = 0;
return OK;
}
//判断栈是否为空
Status StackEmpty(LinkStack S){
if(S.count == 0) return TRUE;
return FALSE;
}
//栈的长调度
int StackLength(LinkStack S){
return S.count;
}
//获取栈顶
Status GetTop(LinkStack S,SElmeType *e){
if(S.top == NULL) return ERROR;
*e = S.top->data;
return OK;
}
//入栈
Status Push(LinkStack *S,SElemType e){
LinkStackPtr temp = (LinkStackPtr)malloc(sizeof(StackNode));
if(!temp) return ERROR;
temp->data = e;
temp->next = S->top;
S->top = temp;
S->count++;
return OK;
}
//出栈
Status Pop(LinkStack *S,SElemType *e){
if(StackEmpty(*S)) return ERROR;
LinkStack p;
*e = S->top->data;
p = S->top;
S->top = S->top->next;
free(p);
S->count--;
return OK;
}
//栈的遍历
Status StackTraverse(LinkStack S){
LinkStackPtr p;
p = S.top;
while(p){
printf("%d",p->data);
p = p->next;
}
return OK;
}
————————————————————
分割线
————————————————————
二、栈与递归
直接或间接调用自己本身就是递归 使用递归的条件
- 1.数学定义就是递归 如阶乘/斐波那契数列
- 2.数据结构是递归 链表的定义
- 3.问题是递归的 汉诺塔/八皇后
分治法:
- 1.条件高度重合,可以将问题拆分成高度相似的方法
- 2.通过分治可以简化问题
- 3.递归 要有出口 递归边界
//斐波那契数列
int Fbi(int i){
if(i<2)
return i==0?0:1;
return Fbi(i-1)+Fbi(i-2);
}
————————————————————
分割线
————————————————————
三、队列
从队尾插数据 从队头出数据
满状态下有一个留空(首尾不能相遇)
- 判断队空 Q.front == Q.rear;
- 判断队满 (Q.rear + 1) % MAXSIZE == Q.front
循环队列的操作实现
//数据结构
typedef struct{
int rear;
int front;
SElemtype data[MAXSIZE];
}CqStack;
//
// main.c
// 001--栈不同表示方式与实现
//
// Created by CC老师 on 2019/9/21.
// Copyright © 2019年 CC老师. All rights reserved.
//
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 20 /* 存储空间初始分配量 */
typedef int Status;
typedef int SElemType; /* SElemType类型根据实际情况而定,这里假设为int */
typedef struct{
int rear;
int front;
SElemtype data[MAXSIZE];
}CqStack;
//初始化空队列
Status InitCqStack(CqStack *S){
S->rear = 0;
S->front = 0;
return OK;
}
//清空
Status ClearCqStack(CqStack *S){
S->rear = S->front = 0;
return OK;
}
//判断为空
Status CqEmpty(CqStack *S){
if(S.front == S.rear){
return TRUE;
}
return FALSE;
}
//判断length
int CqLength(CqStack S){
return (S.rear - S.front + MAXSIZE) % MAXSIZE;
}
//入队
Status pushCq(CqStack *S,SElemType *e){
if((S->rear +1 ) % MAXSIZE == S->front ) return ERROR;
S->data[S->rear] = e;
S->rear = (S->rear +1) % MAXSIZE;
return OK;
}
//出队
Status PopCq(CqStack *S,SElemType *e){
if(S->front == S->rear) return ERROR;
*e = S->data[S->front];
S->front = (S->front +1) %MAXSIZE;
return OK;
}
//遍历
Status CqTraverse(CqStack S){
int i;
i=S.front;
printf("遍历循环队列\n");
while(i!=S.rear){
printf(S.data[i]);
i = (i+1)%MAXSIZE;
}
printf("\n");
return OK;
}
//获取头
Status getCqHead(CqStack S,SElemType *e){
if(S.front == S.rear) return ERROR;
*e = S.data[S.front];
return OK;
}
int main(int argc, const char * argv[]) {
// insert code here...
printf("循环队列的表示与实现!\n");
CqStack S;
int e;
if (InitCqStack(&S) == OK) {
for (int j = 1 ; j < 10; j++) {
pushCq(&S, j);
}
}
printf("遍历队列中元素为:\n");
CqTraverse(S);
PopCq(&S, &e);
printf("出队元素为: %d\n",e);
CqTraverse(S);
printf("是否为空栈:%d\n",CqEmpty(S));
getCqHead(S, &e);
printf("元素:%d \n队列长度:%d\n",e,CqLength(S));
ClearCqStack(&S);
printf("是否已经清空队列 %d, 栈长度为:%d\n",CqEmpty(S),CqLength(S));
return 0;
}