Object-C内存管理

704 阅读22分钟

一.内存布局

如上图,内存布局共分为如下几个区:

  • 内核:由系统控制处理的,大概有占有1个GB
  • :函数、方法、局部变量等会储存在这里面
  • :通过alloc分配对象、block copy...
  • bss:未初始化的全局变量、静态变量...
  • data:已初始化的全局变量、静态变量...
  • text: 程序代码
  • 保留:由系统控制处理

(0xC0000000 = 3221225472 = 3GB),所以从栈区到保留区占有3GB 栈区从高地址向低地址延伸,堆区从低地址向高地址攀升 bss和data区在不区分是否初始化时,一般统称全局区 栈区内存地址:⼀般为:0x7开头 堆区内存地址:⼀般为:0x6开头 数据段,BSS内存地址:⼀般为:0x1开头

二.内存管理方案

iOS提供三种内存管理方案,TaggedPointer,NONPOINTER_ISA,散列表.

1.TaggedPointer:

  • ⼩对象-NSNumber,NSDate等
  • 不再是一个简单的地址,而是真正的值,里面包含值,类型等等。它不再是一个对象,内存不存储在堆中,也不需要malloc/free
  • 读取速度快3倍,创建速度提升106倍。

###位运算知识补充

  • (1)对同一个数值异或(^)两次,能回到原来的值(a^b^b=a)。
  1010 1101  a
^ 0000 1100  b 
  ---------
  1010 0001
^ 0000 1100  b
  ---------
  1010 1101  a
  • (2)按位取反(~)
~100001
-------
 011110
  • (3)左移(<<)右移(>>)操作
10000111 << 3 = 10000111000
10000111 >> 3 = 10000
  • (4)位与(&)位或(|), (a | b ^ b = b)
  1000 1100  a
| 1010 1010  b
------------
  1010 1110
& 1010 1010 b
-------------
  1010 1010 b

源码分析

  • TaggedPointer生成:
#if __has_feature(objc_fixed_enum)  ||  __cplusplus >= 201103L
enum objc_tag_index_t : uint16_t
#else
typedef uint16_t objc_tag_index_t;
enum
#endif
{
    // 60-bit payloads
    OBJC_TAG_NSAtom            = 0, 
    OBJC_TAG_1                 = 1, 
    OBJC_TAG_NSString          = 2, 
    OBJC_TAG_NSNumber          = 3, 
    OBJC_TAG_NSIndexPath       = 4, 
    OBJC_TAG_NSManagedObjectID = 5, 
    OBJC_TAG_NSDate            = 6,

    // 60-bit reserved
    OBJC_TAG_RESERVED_7        = 7, 

    // 52-bit payloads
    OBJC_TAG_Photos_1          = 8,
    OBJC_TAG_Photos_2          = 9,
    OBJC_TAG_Photos_3          = 10,
    OBJC_TAG_Photos_4          = 11,
    OBJC_TAG_XPC_1             = 12,
    OBJC_TAG_XPC_2             = 13,
    OBJC_TAG_XPC_3             = 14,
    OBJC_TAG_XPC_4             = 15,

    OBJC_TAG_First60BitPayload = 0, 
    OBJC_TAG_Last60BitPayload  = 6, 
    OBJC_TAG_First52BitPayload = 8, 
    OBJC_TAG_Last52BitPayload  = 263, 

    OBJC_TAG_RESERVED_264      = 264
};
#if __has_feature(objc_fixed_enum)  &&  !defined(__cplusplus)
typedef enum objc_tag_index_t objc_tag_index_t;
#endif

static inline void * _Nonnull
_objc_makeTaggedPointer(objc_tag_index_t tag, uintptr_t value)
{
    // PAYLOAD_LSHIFT and PAYLOAD_RSHIFT are the payload extraction shifts.
    // They are reversed here for payload insertion.

    // assert(_objc_taggedPointersEnabled());
    if (tag <= OBJC_TAG_Last60BitPayload) {
        // assert(((value << _OBJC_TAG_PAYLOAD_RSHIFT) >> _OBJC_TAG_PAYLOAD_LSHIFT) == value);
        uintptr_t result =
            (_OBJC_TAG_MASK | 
             ((uintptr_t)tag << _OBJC_TAG_INDEX_SHIFT) | 
             ((value << _OBJC_TAG_PAYLOAD_RSHIFT) >> _OBJC_TAG_PAYLOAD_LSHIFT));
        return _objc_encodeTaggedPointer(result);
    } else {
        // assert(tag >= OBJC_TAG_First52BitPayload);
        // assert(tag <= OBJC_TAG_Last52BitPayload);
        // assert(((value << _OBJC_TAG_EXT_PAYLOAD_RSHIFT) >> _OBJC_TAG_EXT_PAYLOAD_LSHIFT) == value);
        uintptr_t result =
            (_OBJC_TAG_EXT_MASK |
             ((uintptr_t)(tag - OBJC_TAG_First52BitPayload) << _OBJC_TAG_EXT_INDEX_SHIFT) |
             ((value << _OBJC_TAG_EXT_PAYLOAD_RSHIFT) >> _OBJC_TAG_EXT_PAYLOAD_LSHIFT));
        return _objc_encodeTaggedPointer(result);
    }
}

源码中通过对类型tagvalue进行一些列位运算 tag << _OBJC_TAG_INDEX_SHIFT说明最后一位是用来存储类型, (value << _OBJC_TAG_PAYLOAD_RSHIFT) >> _OBJC_TAG_PAYLOAD_LSHIFT)存储value, _OBJC_TAG_MASK用来快速标记这是一个TaggedPointer类型 然后调用_objc_encodeTaggedPointer进行混淆,这也是为什么直接打印地址无法看出这是一个特殊地址的原因。

  • 编码,解码 _objc_encodeTaggedPointer_objc_decodeTaggedPointer使用的就是a^b^b=a这个原理.
static inline void * _Nonnull
_objc_encodeTaggedPointer(uintptr_t ptr)
{
    return (void *)(objc_debug_taggedpointer_obfuscator ^ ptr);
}

static inline uintptr_t
_objc_decodeTaggedPointer(const void * _Nullable ptr)
{
    return (uintptr_t)ptr ^ objc_debug_taggedpointer_obfuscator;
}
static void
initializeTaggedPointerObfuscator(void)
{
    if (sdkIsOlderThan(10_14, 12_0, 12_0, 5_0, 3_0) ||
        // Set the obfuscator to zero for apps linked against older SDKs,
        // in case they're relying on the tagged pointer representation.
        DisableTaggedPointerObfuscation) {
        objc_debug_taggedpointer_obfuscator = 0;
    } else {
        // Pull random data into the variable, then shift away all non-payload bits.
        arc4random_buf(&objc_debug_taggedpointer_obfuscator,
                       sizeof(objc_debug_taggedpointer_obfuscator));
        objc_debug_taggedpointer_obfuscator &= ~_OBJC_TAG_MASK;
    }
}

sdkIsOlderThan(10_14, 12_0, 12_0, 5_0, 3_0说明在这之前的版本objc_debug_taggedpointer_obfuscator为0,可以直接看出地址的特殊性。单只之后的版本就无法看出了,需要手动_objc_decodeTaggedPointer才能看到.

  • 判断是否为TaggedPointer类型
static inline bool 
_objc_isTaggedPointer(const void * _Nullable ptr) 
{
    return ((uintptr_t)ptr & _OBJC_TAG_MASK) == _OBJC_TAG_MASK;
}

通过位运算补充中的(4)a|b&b=b可快速判断是否为TaggedPointer

  • TaggedPointer取值
static inline uintptr_t
_objc_getTaggedPointerValue(const void * _Nullable ptr) 
{
    // assert(_objc_isTaggedPointer(ptr));
    uintptr_t value = _objc_decodeTaggedPointer(ptr);
    uintptr_t basicTag = (value >> _OBJC_TAG_INDEX_SHIFT) & _OBJC_TAG_INDEX_MASK;
    if (basicTag == _OBJC_TAG_INDEX_MASK) {
        return (value << _OBJC_TAG_EXT_PAYLOAD_LSHIFT) >> _OBJC_TAG_EXT_PAYLOAD_RSHIFT;
    } else {
        return (value << _OBJC_TAG_PAYLOAD_LSHIFT) >> _OBJC_TAG_PAYLOAD_RSHIFT;
    }
}

首先进行_objc_decodeTaggedPointer解密 然后使用和TaggedPointer生成算法相反方式取出值.

实践

   extern uintptr_t objc_debug_taggedpointer_obfuscator;

    int a = 10;
    NSString * t = [NSString stringWithFormat:@"jensen"];
    NSNumber *aNum = @(a);// 64

    NSLog(@"%s %p %@ 0x%lx",object_getClassName(aNum),aNum,aNum,_objc_encodeTaggedPointer(aNum));
    NSLog(@"%s %p %@ 
    0x%lx",object_getClassName(t),t,t,_objc_encodeTaggedPointer(t));

uintptr_t _objc_encodeTaggedPointer(uintptr_t ptr)
{
    return (objc_debug_taggedpointer_obfuscator ^ ptr);
}

打印结果:

__NSCFNumber 0xa39a2c1af54f3585 10 0xb0000000000000a3
 NSTaggedPointerString 0xb39cca4dc3a96380 jensen 0xa006e65736e656a6

总结

TaggedPointer是通过对值和类型进行一系列位运算生成数值。通过这个数据可以快速判断类型,和获取对应的值。对小类型(NSNumber,NSDate等)将不需要在使用64位来存储,大大节省占用的内存,提高创建和访问效率。

面试题


- (void)taggedPointer_1 {
    dispatch_queue_t queue = dispatch_queue_create("jensen", DISPATCH_QUEUE_CONCURRENT);
    for (int i = 0; i<10000; i++) {
        dispatch_async(queue, ^{
            self.nameStr = [NSString stringWithFormat:@"jensen"];
            NSLog(@"%@",self.nameStr);
        });
    }
}

- (void)taggedPointer_2 {
    dispatch_queue_t queue = dispatch_queue_create("jensen2", DISPATCH_QUEUE_CONCURRENT);
    for (int i = 0; i<10000; i++) {
        dispatch_async(queue, ^{
            self.nameStr = [NSString stringWithFormat:@"大家一起搞起来"];
            NSLog(@"%@",self.nameStr);
        });
    }
}

测试结果:taggedPointer_1运行正常,taggedPointer_2却崩溃,什么原因?

从崩溃信息中,我们知道是释放过度导致的。 代码中self.nameStr = [NSString stringWithFormat:@"大家一起搞起来"];,调用属性的set方法。

static inline void reallySetProperty(id self, SEL _cmd, id newValue, ptrdiff_t offset, bool atomic, bool copy, bool mutableCopy)
{
    if (offset == 0) {
        object_setClass(self, newValue);
        return;
    }

    id oldValue;
    id *slot = (id*) ((char*)self + offset);

    if (copy) {
        newValue = [newValue copyWithZone:nil];
    } else if (mutableCopy) {
        newValue = [newValue mutableCopyWithZone:nil];
    } else {
        if (*slot == newValue) return;
        newValue = objc_retain(newValue);
    }

    if (!atomic) {
        oldValue = *slot;
        *slot = newValue;
    } else {
        spinlock_t& slotlock = PropertyLocks[slot];
        slotlock.lock();
        oldValue = *slot;
        *slot = newValue;        
        slotlock.unlock();
    }

    objc_release(oldValue);
}

从上述代码,我们知道对象赋值(set)实际上是retain/copy新值,释放(release)旧值。由于多线程操作不断的retain/release,这种情况下是不安全的。会造成对象过度释放的情况。

__attribute__((aligned(16), flatten, noinline))
id 
objc_retain(id obj) {
    if (!obj) return obj;
    if (obj->isTaggedPointer()) return obj;
    return obj->retain();
}

__attribute__((aligned(16), flatten, noinline))
void 
objc_release(id obj) {
    if (!obj) return;
    if (obj->isTaggedPointer()) return;
    return obj->release();
}

如果是TaggedPointer类型,在retain/release会直接retuan,不会真正的调用对象的retain/release。当对象赋值为jensen属于TaggedPointer类型,当字符串中包含有中文,或者长度比较长,TaggedPointer无法存储,那就不是TaggedPointer了。

2.NONPOINTER_ISA:⾮指针型isa

什么是NONPOINTER_ISA?

我们知道在OC中,万物皆对象objc_object

struct objc_object {
    Class _Nonnull isa  OBJC_ISA_AVAILABILITY;
};

在此之前,我一直认为isa就是仅仅只是一个指针,实例对象的isa指向类,类对象的指针指向元类。但其实isa除包含指针外还包含其他信息,例如对象的引用计数、是否包含C++析构、是否被弱引用等等...这时这个isa就是NONPOINTER_ISA。isa是isa_t类型的联合体,其内部通过位域技术储存很多了对象的信息。

union isa_t 
{
    isa_t() { }
    isa_t(uintptr_t value) : bits(value) { }

    Class cls;
    uintptr_t bits;

# if __arm64__
#   define ISA_MASK        0x0000000ffffffff8ULL
#   define ISA_MAGIC_MASK  0x000003f000000001ULL
#   define ISA_MAGIC_VALUE 0x000001a000000001ULL
    struct {
        uintptr_t nonpointer        : 1;
        uintptr_t has_assoc         : 1;
        uintptr_t has_cxx_dtor      : 1;
        uintptr_t shiftcls          : 33; // MACH_VM_MAX_ADDRESS 0x1000000000
        uintptr_t magic             : 6;
        uintptr_t weakly_referenced : 1;
        uintptr_t deallocating      : 1;
        uintptr_t has_sidetable_rc  : 1;
        uintptr_t extra_rc          : 19;
#       define RC_ONE   (1ULL<<45)
#       define RC_HALF  (1ULL<<18)
    };
}
  • nonpointer:表示是否对 isa 指针开启指针优化 0:纯isa指针,1:不⽌是类对象地址,isa 中包含了类信息、对象的引⽤计数等
  • has_assoc:关联对象标志位,0没有,1存在
  • has_cxx_dtor:该对象是否有 C++ 或者 Objc 的析构器,如果有析构函数,则需要做析构逻辑, 如果没有,则可以更快的释放对象
  • shiftcls: 存储类指针的值。开启指针优化的情况下,在 arm64 架构中有 33 位⽤来存储类指针。
  • magic:⽤于调试器判断当前对象是真的对象还是没有初始化的空间
  • weakly_referenced:标识对象是否被指向或者曾经指向⼀个 ARC 的弱变量, 没有弱引⽤的对象可以更快释放。
  • deallocating:标志对象是否正在释放内存
  • has_sidetable_rc:当对象引⽤技术⼤于 10 时,则需要借⽤该变量存储进位
  • extra_rc:表示该对象的引⽤计数值,实际上是引⽤计数值减 1, 例如,如果对象的引⽤计数为 10,那么 extra_rc 为 9。如果引⽤计数⼤于 10, 则需要使⽤到下⾯的 has_sidetable_rc。

注:当对象重写过retain,release,allocWithZone(rr/awz),那就不再是一个NONPOINTER_ISA

3.散列表:引⽤计数表,弱引⽤表

SideTables是系统维护的哈希表,内部存储了一张张散列表SideTable.每一张散列表主要用来记录对象的引用计数,弱引用对象存储等。

SideTables

SideTables数据结构:

class StripedMap {
#if TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR
    enum { StripeCount = 8 };
#else
    enum { StripeCount = 64 };
#endif

    struct PaddedT {
        T value alignas(CacheLineSize);
    };

    PaddedT array[StripeCount];

    static unsigned int indexForPointer(const void *p) {
        uintptr_t addr = reinterpret_cast<uintptr_t>(p);
        return ((addr >> 4) ^ (addr >> 9)) % StripeCount;
    }

 public:
    T& operator[] (const void *p) { 
        return array[indexForPointer(p)].value; 
    }
    const T& operator[] (const void *p) const { 
        return const_cast<StripedMap<T>>(this)[p]; 
    }

    // Shortcuts for StripedMaps of locks.
    void lockAll() {
        for (unsigned int i = 0; i < StripeCount; i++) {
            array[i].value.lock();
        }
    }

    void unlockAll() {
        for (unsigned int i = 0; i < StripeCount; i++) {
            array[i].value.unlock();
        }
    }

    void forceResetAll() {
        for (unsigned int i = 0; i < StripeCount; i++) {
            array[i].value.forceReset();
        }
    }

    void defineLockOrder() {
        for (unsigned int i = 1; i < StripeCount; i++) {
            lockdebug_lock_precedes_lock(&array[i-1].value, &array[i].value);
        }
    }

    void precedeLock(const void *newlock) {
        // assumes defineLockOrder is also called
        lockdebug_lock_precedes_lock(&array[StripeCount-1].value, newlock);
    }

    void succeedLock(const void *oldlock) {
        // assumes defineLockOrder is also called
        lockdebug_lock_precedes_lock(oldlock, &array[0].value);
    }

    const void *getLock(int i) {
        if (i < StripeCount) return &array[i].value;
        else return nil;
    }
    
#if DEBUG
    StripedMap() {
        // Verify alignment expectations.
        uintptr_t base = (uintptr_t)&array[0].value;
        uintptr_t delta = (uintptr_t)&array[1].value - base;
        assert(delta % CacheLineSize == 0);
        assert(base % CacheLineSize == 0);
    }
#else
    constexpr StripedMap() {}
#endif
};
  • static unsigned int indexForPointer(const void *p)对象指针通过哈希算法计算出对应的下标序号。
  • T& operator[] (const void *p)重写[]操作符,可通过,&SideTables()[oldObj]方式获取这个对象指针对应的SideTable
  • lldb调试,在SideTables结构中获取一张SideTable
(lldb) p indexForPointer(p)
(unsigned int) $4 = 4
(lldb) p array[indexForPointer(p)].value
((anonymous namespace)::SideTable) $5 = {
  slock = {
    mLock = (_os_unfair_lock_opaque = 0)
  }
  refcnts = {
    Buckets = 0x0000000000000000
    NumEntries = 0
    NumTombstones = 0
    NumBuckets = 0
  }
  weak_table = {
    weak_entries = 0x0000000000000000
    num_entries = 0
    mask = 0
    max_hash_displacement = 0
  }
}

SideTable

SideTable内部数据结构:

struct SideTable {
    spinlock_t slock;
    RefcountMap refcnts;
    weak_table_t weak_table;
    ...
};

spinlock_t slock自旋锁,用于控制SideTable的访问安全. refcnts引用计数表,是一个Map,用于存储引用计数,具体下面会展开讲解。 weak_table弱引用表.

疑问

1.SidleTables是一张哈希表,内部存了多张散列表。为什么需要使用多张? 答:对SidleTable操作时,需要进行加锁、解锁。频繁操作,会降低性能。多张表可以分开加锁,提高效率。 2.为什么不是一个类对应一个SidleTable? 创建SidleTable和管理SidleTable都需要耗费性能,所以几个类共用一个SidleTable

三.引用计数

1.alloc出来的引用技术是多少? 2.对象在什么时候会调用Dealloc? 3.引用计数在什么时候会加,减? 4.引用计数存在哪? 5.dealloc底层,应该做一些什么事情?

带着上面几个问题,我们展开对源码的分析。引用计数的核心就是对象的retainrelease,因此首先从这2个函数入手分析:

retain

-(id) retain
{
    return _objc_rootRetain(self);
}
id
_objc_rootRetain(id obj)
{
    assert(obj);

    return obj->rootRetain();
}
objc_object::rootRetain()
{
    return rootRetain(false, false);
}
objc_object::rootRetain(bool tryRetain, bool handleOverflow)
{
    //1. isTaggedPointer 直接返回
    if (isTaggedPointer()) return (id)this;
    //2.用于标记锁的状态
    bool sideTableLocked = false;
    //3.标记是否需要装到到
    bool transcribeToSideTable = false;

    isa_t oldisa;
    isa_t newisa;

    do {
        transcribeToSideTable = false;
        oldisa = LoadExclusive(&isa.bits);
        newisa = oldisa;
        //4.不是nonpointer
        if (slowpath(!newisa.nonpointer)) {
            ClearExclusive(&isa.bits);
            if (!tryRetain && sideTableLocked) sidetable_unlock();
            if (tryRetain) return sidetable_tryRetain() ? (id)this : nil;
            //5.不是nonpointer类型,跳转nonpointer
            else return sidetable_retain();
        }
        // don't check newisa.fast_rr; we already called any RR overrides
        //6.析构,返回nil
        if (slowpath(tryRetain && newisa.deallocating)) {
            ClearExclusive(&isa.bits);
            if (!tryRetain && sideTableLocked) sidetable_unlock();
            return nil;
        }
        //7.进位标记
        uintptr_t carry;
        //8.extra_rc++
        newisa.bits = addc(newisa.bits, RC_ONE, 0, &carry);  // extra_rc++

        if (slowpath(carry)) {
            //9. newisa.extra_rc++ overflowed
            if (!handleOverflow) {
                ClearExclusive(&isa.bits);
                return rootRetain_overflow(tryRetain);
            }
            // Leave half of the retain counts inline and 
            // prepare to copy the other half to the side table.
            if (!tryRetain && !sideTableLocked) sidetable_lock();
            sideTableLocked = true;
            transcribeToSideTable = true;
            //10.溢出时extra_rc保存一把
            newisa.extra_rc = RC_HALF;
            newisa.has_sidetable_rc = true;
        }
    } while (slowpath(!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)));

    if (slowpath(transcribeToSideTable)) {
        // Copy the other half of the retain counts to the side table.
        sidetable_addExtraRC_nolock(RC_HALF);
    }

    if (slowpath(!tryRetain && sideTableLocked)) sidetable_unlock();
    return (id)this;
}

id
objc_object::sidetable_retain()
{
#if SUPPORT_NONPOINTER_ISA
    assert(!isa.nonpointer);
#endif
    SideTable& table = SideTables()[this];
    
    table.lock();
    size_t& refcntStorage = table.refcnts[this];
    if (! (refcntStorage & SIDE_TABLE_RC_PINNED)) {
        refcntStorage += SIDE_TABLE_RC_ONE;
    }
    table.unlock();

    return (id)this;
}

  • 1.TaggedPointer类型,直接return
  • 2.不是nonpointer类型,调用sidetable_retain,对引用计数表数值+1
  • 3.nonpointer类型,extra_rc++,判断是否溢出,溢出时,extra_rc存储RC_HALF(RC_HALF)的引用计数,另一半存储值散列表的引用技术表。

release

retain类似,此处就不再贴源码.

  • 1.TaggedPointer类型,直接return
  • 2.不是nonpointer类型,调用sidetable_retain,对引用计数表数值-1
  • 3.nonpointer类型,extra_rc--,判断是否下溢出
  • 4.当下溢出时,判断散列表是否还有值,如果有就从散列表借,extra_rc存储RC_HALF(RC_HALF)引用计数.
  • 如果散列表也没有了,那就标记deallocating为true,并发送dealloc消息.

retainCount()

inline uintptr_t 
objc_object::rootRetainCount()
{
    if (isTaggedPointer()) return (uintptr_t)this;

    sidetable_lock();
    isa_t bits = LoadExclusive(&isa.bits);
    ClearExclusive(&isa.bits);
    if (bits.nonpointer) {
        uintptr_t rc = 1 + bits.extra_rc;
        if (bits.has_sidetable_rc) {
            rc += sidetable_getExtraRC_nolock();
        }
        sidetable_unlock();
        return rc;
    }

    sidetable_unlock();
    return sidetable_retainCount();
}
  • 1.TaggedPointer返回的是(uintptr_t)this
    1. nonpointer返回的是 1 + bits.extra_rc,如果引用计数表有值,还需要加上引用计数表的存储值
    1. nonpointer,返回计数表的存储值

dealloc

   if (isTaggedPointer()) return;  // fixme necessary?

    if (fastpath(isa.nonpointer  &&  
                 !isa.weakly_referenced  &&  
                 !isa.has_assoc  &&  
                 !isa.has_cxx_dtor  &&  
                 !isa.has_sidetable_rc))
    {
        assert(!sidetable_present());
        free(this);
    } 
    else {
        object_dispose((id)this);
    }
  • 1.TaggedPointer,直接return
  • 2.isa.nonpointer && !isa.weakly_referenced && !isa.has_assoc && !isa.has_cxx_dtor && !isa.has_sidetable_rc,直接释放
  • 3.存在析构函数、关联对象,都需要移除
  • 4.在引用计数表中檫除对象,弱引用表设置为Nil
  • 5.释放

总结:通过对retain,release,retainCount,dealloc源码分析,上述5个问题均可以在里面找到答案。此处就不在赘述。

四.弱引用weak

1.弱引用对象是如何加入弱引用计数? 2.对象析构时,对象弱引用表中的对象如何设置为nil?

  NSObject * n = [[NSObject alloc] init];
   __weak NSObject *weakN = n;

lldb调试得出,声明以为weak变量首先会执行objc_initWeak函数,因此我们从此处入手进行分析。

id
objc_initWeak(id *location, id newObj)
{
    if (!newObj) {
        *location = nil;
        return nil;
    }

    return storeWeak<DontHaveOld, DoHaveNew, DoCrashIfDeallocating>
        (location, (objc_object*)newObj);
}
  • newObj不存在,直接return,否则调用storeWeak
static id 
storeWeak(id *location, objc_object *newObj)
{
    assert(haveOld  ||  haveNew);
    if (!haveNew) assert(newObj == nil);

    Class previouslyInitializedClass = nil;
    id oldObj;
    SideTable *oldTable;
    SideTable *newTable;

    // Acquire locks for old and new values.
    // Order by lock address to prevent lock ordering problems. 
    // Retry if the old value changes underneath us.
 retry:
    if (haveOld) {
        oldObj = *location;
        oldTable = &SideTables()[oldObj];
    } else {
        oldTable = nil;
    }
    if (haveNew) {
        newTable = &SideTables()[newObj];
    } else {
        newTable = nil;
    }

    SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);

    if (haveOld  &&  *location != oldObj) {
        SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
        goto retry;
    }

    // Prevent a deadlock between the weak reference machinery
    // and the +initialize machinery by ensuring that no 
    // weakly-referenced object has an un-+initialized isa.
    if (haveNew  &&  newObj) {
        Class cls = newObj->getIsa();
        if (cls != previouslyInitializedClass  &&  
            !((objc_class *)cls)->isInitialized()) 
        {
            SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
            class_initialize(cls, (id)newObj);

            // If this class is finished with +initialize then we're good.
            // If this class is still running +initialize on this thread 
            // (i.e. +initialize called storeWeak on an instance of itself)
            // then we may proceed but it will appear initializing and 
            // not yet initialized to the check above.
            // Instead set previouslyInitializedClass to recognize it on retry.
            previouslyInitializedClass = cls;

            goto retry;
        }
    }

    // Clean up old value, if any.
    if (haveOld) {
        weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
    }

    // Assign new value, if any.
    if (haveNew) {
        newObj = (objc_object *)
            weak_register_no_lock(&newTable->weak_table, (id)newObj, location, 
                                  crashIfDeallocating);
        // weak_register_no_lock returns nil if weak store should be rejected

        // Set is-weakly-referenced bit in refcount table.
        if (newObj  &&  !newObj->isTaggedPointer()) {
            newObj->setWeaklyReferenced_nolock();
        }

        // Do not set *location anywhere else. That would introduce a race.
        *location = (id)newObj;
    }
    else {
        // No new value. The storage is not changed.
    }
    
    SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);

    return (id)newObj;
}
  • 如果存在旧值,调用weak_unregister_no_lock处理。
void
weak_unregister_no_lock(weak_table_t *weak_table, id referent_id, 
                        id *referrer_id)
{
    objc_object *referent = (objc_object *)referent_id;
    objc_object **referrer = (objc_object **)referrer_id;

    weak_entry_t *entry;

    if (!referent) return;

    if ((entry = weak_entry_for_referent(weak_table, referent))) {
        remove_referrer(entry, referrer);
        bool empty = true;
        if (entry->out_of_line()  &&  entry->num_refs != 0) {
            empty = false;
        }
        else {
            for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
                if (entry->inline_referrers[i]) {
                    empty = false; 
                    break;
                }
            }
        }

        if (empty) {
            weak_entry_remove(weak_table, entry);
        }
    }

    // Do not set *referrer = nil. objc_storeWeak() requires that the 
    // value not change.
}
  1. 首先调用weak_entry_for_referentwaek_table中获取entry
  2. 然后调用remove_referrer,在entryreferrers中找到地址的索引,entry->referrers[index] = nil;entry->num_refs--;设置为nil,并将num_refs减1
  3. 判断entry是否还有值,没有就在weak_table移除这个entry
  • 如果不存在旧值,调用weak_register_no_lock
 // now remember it and where it is being stored
    weak_entry_t *entry;
    if ((entry = weak_entry_for_referent(weak_table, referent))) {
        append_referrer(entry, referrer);
    } 
    else {
        weak_entry_t new_entry(referent, referrer);
        weak_grow_maybe(weak_table);
        weak_entry_insert(weak_table, &new_entry);

(entry = weak_entry_for_referent(weak_table, referent))获取entry (1)entry存在,调用append_referrer,将new_referrer添加到entry->referrersnew_referrer先赋值到entry->inline_referrers[i] 然后将entry->inline_referrers循环对应拷贝到new_referrersnew_referrers赋值给entry->referrers = new_referrers; (2)entry不存在, 创建⼀个weak_entry_treferent加⼊到weak_entry_t的数组inline_referrers,`` 把weak_table扩容,weak_grow_maybe(weak_table)new_entry加⼊到weak_table中.weak_entry_insert(weak_table, &new_entry);

三.引用计数dealloc中,我们知道,对象在析构(deealloc)时,如果存在弱引用对象:

  ...
  SideTable& table = SideTables()[this];
    table.lock();
    if (isa.weakly_referenced) {
        weak_clear_no_lock(&table.weak_table, (id)this);
    }
    //在引用技术标中,移除这个对象。
    if (isa.has_sidetable_rc) {
        table.refcnts.erase(this);
    }
     table.unlock()
    ...

存在弱引用对象,调用weak_clear_no_lock

void 
weak_clear_no_lock(weak_table_t *weak_table, id referent_id) 
{
    objc_object *referent = (objc_object *)referent_id;

    weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
    if (entry == nil) {
        /// XXX shouldn't happen, but does with mismatched CF/objc
        //printf("XXX no entry for clear deallocating %p\n", referent);
        return;
    }

    // zero out references
    weak_referrer_t *referrers;
    size_t count;
    
    if (entry->out_of_line()) {
        referrers = entry->referrers;
        count = TABLE_SIZE(entry);
    } 
    else {
        referrers = entry->inline_referrers;
        count = WEAK_INLINE_COUNT;
    }
    
    for (size_t i = 0; i < count; ++i) {
        objc_object **referrer = referrers[i];
        if (referrer) {
            if (*referrer == referent) {
                *referrer = nil;
            }
            else if (*referrer) {
                _objc_inform("__weak variable at %p holds %p instead of %p. "
                             "This is probably incorrect use of "
                             "objc_storeWeak() and objc_loadWeak(). "
                             "Break on objc_weak_error to debug.\n", 
                             referrer, (void*)*referrer, (void*)referent);
                objc_weak_error();
            }
        }
    }
    
    weak_entry_remove(weak_table, entry);
}
  • weak_table获取对象的entry
  • 循环entry下的referrers,将其指向设置为nil,*referrer = nil;
  • weak_table中移除entry

五.变量修饰符

变量修饰符有一下几种情况:

typedef enum {
    objc_ivar_memoryUnknown,     // unknown / unknown
    objc_ivar_memoryStrong,      // direct access / objc_storeStrong
    objc_ivar_memoryWeak,        // objc_loadWeak[Retained] / objc_storeWeak
    objc_ivar_memoryUnretained   // direct access / direct access
} objc_ivar_memory_management_t;

通过源码分析变量不同修饰符的setter方法的处理:

void _object_setIvar(id obj, Ivar ivar, id value, bool assumeStrong)
{
    if (!obj  ||  !ivar  ||  obj->isTaggedPointer()) return;

    ptrdiff_t offset;
    objc_ivar_memory_management_t memoryManagement;
    _class_lookUpIvar(obj->ISA(), ivar, offset, memoryManagement);

    if (memoryManagement == objc_ivar_memoryUnknown) {
        if (assumeStrong) memoryManagement = objc_ivar_memoryStrong;
        else memoryManagement = objc_ivar_memoryUnretained;
    }

    id *location = (id *)((char *)obj + offset);

    switch (memoryManagement) {
    case objc_ivar_memoryWeak:       objc_storeWeak(location, value); break;
    case objc_ivar_memoryStrong:     objc_storeStrong(location, value); break;
    case objc_ivar_memoryUnretained: *location = value; break;
    case objc_ivar_memoryUnknown:    _objc_fatal("impossible");
    }
}
  • TaggedPointer类型,直接return
  • 获取内存修饰符objc_ivar_memory_management_t._class_lookUpIvar(obj->ISA(), ivar, offset, memoryManagement) (1)objc_ivar_memoryWeak,调用objc_storeWeak操作弱引用表,上述已经分析过. (2)objc_ivar_memoryStrong,调用objc_storeStrong,retain新值,释放旧值 (3)objc_ivar_memoryUnretained,直接将value存储至*location。这也说明为什么Unretained是不安全的。

六.自动释放池AutoReleasePool

自动释放池介绍

AutoReleasePoolARC引入的,用于管理对象的引用计数。 以下是AutoReleasePool的几个要点:

  • 一个线程的自动释放池是一种栈形式的指针集合,先进后出;
  • 每个指针要么是要释放的对象,要么是池的边界,即自动释放池边界;
  • 池token是指向该池边界的指针。当池被弹出时,所有比哨兵还热的对象都被释放;
  • 这个栈是一个双向链表的页面列表。根据需要添加和删除页面。
  • 线程本地存储指向热页,其中存储新的自动释放的对象。

AutoReleasePool结构图:

AutoReleasePool数据结构:

class AutoreleasePoolPage;
struct AutoreleasePoolPageData {
	magic_t const magic; // 16
	__unsafe_unretained id *next; //8
	pthread_t const thread; // 8
	//证明了双向链表结构
	AutoreleasePoolPage * const parent; //8
	AutoreleasePoolPage *child; //8
	uint32_t const depth; // 4
	uint32_t hiwat; // 4

	AutoreleasePoolPageData(__unsafe_unretained id* _next, pthread_t _thread, AutoreleasePoolPage* _parent, uint32_t _depth, uint32_t _hiwat)
		: magic(), next(_next), thread(_thread),
		  parent(_parent), child(nil),
		  depth(_depth), hiwat(_hiwat)
	{
	}
};
  • AutoreleasePoolPage是个继承于AutoreleasePoolPageData结构体的类,objc4-779.1版本开始独立出AutoreleasePoolPageData结构体,之前变量是直接在AutoreleasePoolPage中。
  • magic_t const magic:用来校验AutoreleasePoolPage的结构是否完整
  • __unsafe_unretained id *next: 指向最新添加的autorelease对象的下一个位置,初始化时指向begin()
  • pthread_t const thread :当前线程
  • AutoreleasePoolPage * const parent :指向父节点,第一个parent节点为nil
  • AutoreleasePoolPage *child:指向子节点,最后一个child节点为nil
  • uint32_t const depth:代表深度,从0开始,递增+1
  • uint32_t hiwat:代表 high water Mark 最大入栈数量标记

自动释放池探索

使用clang -rewrite-objc main.m -o main.cpp编译如下代码:

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        NSLog(@"Jensen");
    }
    return 0;
}

编译结果:

int main(int argc, const char * argv[]) {

    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 
        NSLog((NSString *)&__NSConstantStringImpl__var_folders_v7_6tlrq64x5w5gqg17582f4p500000gn_T_main_3f39be_mi_0);
    }
    return 0;
}
struct __AtAutoreleasePool {
  __AtAutoreleasePool() {atautoreleasepoolobj = objc_autoreleasePoolPush();}
  ~__AtAutoreleasePool() {objc_autoreleasePoolPop(atautoreleasepoolobj);}
  void * atautoreleasepoolobj;
};

@autoreleasepool{}实际上是实例化__AtAutoreleasePool,在构造方法中调用objc_autoreleasePoolPush

atautoreleasepoolobj = objc_autoreleasePoolPush();

    static inline void *push() 
    {
        id *dest;
        if (slowpath(DebugPoolAllocation)) {
            // Each autorelease pool starts on a new pool page.
            dest = autoreleaseNewPage(POOL_BOUNDARY);
        } else {
            dest = autoreleaseFast(POOL_BOUNDARY);
        }
        ASSERT(dest == EMPTY_POOL_PLACEHOLDER || *dest == POOL_BOUNDARY);
        return dest;
    }
  • 通过环境变量OBJC_DEBUG_POOL_ALLOCATION判断自动释放池是否被允许跟踪调试,如果允许调用autoreleaseNewPage,否则进入autoreleaseFast.此处,我们分析autoreleaseFast
  • 自动释放池初始化,会调用objc_autoreleasePoolPush
  static inline id *autoreleaseFast(id obj)
    {
        AutoreleasePoolPage *page = hotPage();
        if (page && !page->full()) {
            return page->add(obj);
        } else if (page) {
            return autoreleaseFullPage(obj, page);
        } else {
            return autoreleaseNoPage(obj);
        }
    }
  • 获取当前AutoreleasePoolPagehotPage
  • 存在hotPage,并且未满,直接调用page->add(obj)将对象添加到AutoreleasePoolPage
  • 存在hotPage,但是已满,调用autoreleaseFullPage
  • 没有hotPage,说明是第一次加入,调用autoreleaseNoPage
  id *add(id obj)
    {
        ASSERT(!full());
        unprotect();
        id *ret = next;  // faster than `return next-1` because of aliasing
        *next++ = obj;
        protect();
        return ret;
    }

将对象加入到hotPage中.

  static __attribute__((noinline))
    id *autoreleaseFullPage(id obj, AutoreleasePoolPage *page)
    {
        // The hot page is full. 
        // Step to the next non-full page, adding a new page if necessary.
        // Then add the object to that page.
        ASSERT(page == hotPage());
        ASSERT(page->full()  ||  DebugPoolAllocation);

        do {
            if (page->child) page = page->child;
            else page = new AutoreleasePoolPage(page);
        } while (page->full());

        setHotPage(page);
        return page->add(obj);
    }

循环找到最后一页,当前page作为父page创建一个新的AutoreleasePoolPage,将新创建的page设置为hotPage,调用add将对象加入到新page中.

    static __attribute__((noinline))
    id *autoreleaseNoPage(id obj)
    {
        // "No page" could mean no pool has been pushed
        // or an empty placeholder pool has been pushed and has no contents yet
        ASSERT(!hotPage());

        bool pushExtraBoundary = false;
        if (haveEmptyPoolPlaceholder()) {
            // We are pushing a second pool over the empty placeholder pool
            // or pushing the first object into the empty placeholder pool.
            // Before doing that, push a pool boundary on behalf of the pool 
            // that is currently represented by the empty placeholder.
            pushExtraBoundary = true;
        }
        else if (obj != POOL_BOUNDARY  &&  DebugMissingPools) {
            // We are pushing an object with no pool in place, 
            // and no-pool debugging was requested by environment.
            _objc_inform("MISSING POOLS: (%p) Object %p of class %s "
                         "autoreleased with no pool in place - "
                         "just leaking - break on "
                         "objc_autoreleaseNoPool() to debug", 
                         objc_thread_self(), (void*)obj, object_getClassName(obj));
            objc_autoreleaseNoPool(obj);
            return nil;
        }
        else if (obj == POOL_BOUNDARY  &&  !DebugPoolAllocation) {
            // We are pushing a pool with no pool in place,
            // and alloc-per-pool debugging was not requested.
            // Install and return the empty pool placeholder.
            return setEmptyPoolPlaceholder();
        }

        // We are pushing an object or a non-placeholder'd pool.

        // Install the first page.
        AutoreleasePoolPage *page = new AutoreleasePoolPage(nil);
        setHotPage(page);
        
        // Push a boundary on behalf of the previously-placeholder'd pool.
        if (pushExtraBoundary) {
            page->add(POOL_BOUNDARY);
        }
        
        // Push the requested object or pool.
        return page->add(obj);
    }

会直接创建第一个page,并将这个page设置为hotPage,然后加入边界符POOL_BOUNDARY

_objc_autoreleasePoolPrint();打印一个空的自动释放池:

一张page占用4096字节,从图中我们知道page属性占用56(3 * 16 + 8)字节,一个page能容纳505((4096 - 56)/8 = 505)个对象,第一页包含POOL的特殊边界符,占用1个对象,因此第一页能容纳504个对象和1个特殊标记符,其他页面能容纳505个对象。

objc_autoreleasePoolPop

void
_objc_autoreleasePoolPop(void *ctxt)
{
    objc_autoreleasePoolPop(ctxt);
}

void
objc_autoreleasePoolPop(void *ctxt)
{
    AutoreleasePoolPage::pop(ctxt);
}

 static inline void
    pop(void *token)
    {
        AutoreleasePoolPage *page;
        id *stop;
        if (token == (void*)EMPTY_POOL_PLACEHOLDER) {
            // Popping the top-level placeholder pool.
            page = hotPage();
            if (!page) {
                // Pool was never used. Clear the placeholder.
                return setHotPage(nil);
            }
            // Pool was used. Pop its contents normally.
            // Pool pages remain allocated for re-use as usual.
            page = coldPage();
            token = page->begin();
        } else {
            page = pageForPointer(token);
        }

        stop = (id *)token;
        if (*stop != POOL_BOUNDARY) {
            if (stop == page->begin()  &&  !page->parent) {
                // Start of coldest page may correctly not be POOL_BOUNDARY:
                // 1. top-level pool is popped, leaving the cold page in place
                // 2. an object is autoreleased with no pool
            } else {
                // Error. For bincompat purposes this is not 
                // fatal in executables built with old SDKs.
                return badPop(token);
            }
        }

        if (slowpath(PrintPoolHiwat || DebugPoolAllocation || DebugMissingPools)) {
            return popPageDebug(token, page, stop);
        }

        return popPage<false>(token, page, stop);
    }
  • 自动释放池析构时,调用_objc_autoreleasePoolPop
  • token指定需要释放到的位置
  • 找到token对应的page
  • popPage<false>(token, page, stop);开始pop
    template<bool allowDebug>
    static void
    popPage(void *token, AutoreleasePoolPage *page, id *stop)
    {
        if (allowDebug && PrintPoolHiwat) printHiwat();

        page->releaseUntil(stop);

        // memory: delete empty children
        if (allowDebug && DebugPoolAllocation  &&  page->empty()) {
            // special case: delete everything during page-per-pool debugging
            AutoreleasePoolPage *parent = page->parent;
            page->kill();
            setHotPage(parent);
        } else if (allowDebug && DebugMissingPools  &&  page->empty()  &&  !page->parent) {
            // special case: delete everything for pop(top)
            // when debugging missing autorelease pools
            page->kill();
            setHotPage(nil);
        } else if (page->child) {
            // hysteresis: keep one empty child if page is more than half full
            if (page->lessThanHalfFull()) {
                page->child->kill();
            }
            else if (page->child->child) {
                page->child->child->kill();
            }
        }
    }
  • page->releaseUntil(stop);释放对象
  • page为空,直接释放这个page,如果有child,将child也kill
  void releaseUntil(id *stop) 
    {
        // Not recursive: we don't want to blow out the stack 
        // if a thread accumulates a stupendous amount of garbage
        
        while (this->next != stop) {
            // Restart from hotPage() every time, in case -release 
            // autoreleased more objects
            AutoreleasePoolPage *page = hotPage();

            // fixme I think this `while` can be `if`, but I can't prove it
            while (page->empty()) {
                page = page->parent;
                setHotPage(page);
            }

            page->unprotect();
            id obj = *--page->next;
            memset((void*)page->next, SCRIBBLE, sizeof(*page->next));
            page->protect();

            if (obj != POOL_BOUNDARY) {
                objc_release(obj);
            }
        }

        setHotPage(this);

#if DEBUG
        // we expect any children to be completely empty
        for (AutoreleasePoolPage *page = child; page; page = page->child) {
            ASSERT(page->empty());
        }
#endif
    }
  • 循环遍历,取出对象,并释放。

总结: 当要pop对象的时候,系统给一个token对象指针,这个指针用于指定释放的程度 找到token对象所在的page,并生成一个stop停止对象,然后开始pop操作 page->releaseUntil(stop),内部循环遍历执行对象的release,直到stop对象,并将当前page设为hotpage 将已经释放对象所属的page杀了,即删除空的child page.

autorelease

前面已经介绍了objc_autoreleasePoolPushobjc_autoreleasePoolPop,接下来我们看看autorelease又做了什么.

static inline id autorelease(id obj)
    {
        ASSERT(obj);
        ASSERT(!obj->isTaggedPointer());
        id *dest __unused = autoreleaseFast(obj);
        ASSERT(!dest  ||  dest == EMPTY_POOL_PLACEHOLDER  ||  *dest == obj);
        return obj;
    }
       static inline id *autoreleaseFast(id obj)
    {
        AutoreleasePoolPage *page = hotPage();
        if (page && !page->full()) {
            return page->add(obj);
        } else if (page) {
            return autoreleaseFullPage(obj, page);
        } else {
            return autoreleaseNoPage(obj);
        }
    }

autorelease的实现和objc_autoreleasePoolPush类似,这里就不在赘述了。

自动释放池、RunLoop

  • App启动后,苹果在主线程 RunLoop 里注册了两个 Observer,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler()

  • 第一个 Observer 监视的事件是 Entry(即将进入Loop),其回调内会调用 _objc_autoreleasePoolPush()创建自动释放池。其 order 是-2147483647,优先级最高,保证创建释放池发生在其他所有回调之前。

  • 第二个 Observer 监视了两个事件: BeforeWaiting(准备进入休眠) 时调用_objc_autoreleasePoolPop()_objc_autoreleasePoolPush() 释放旧的池并创建新池;Exit(即将退出Loop)时调用_objc_autoreleasePoolPop() 来释放自动释放池。这个 Observer 的 order 是 2147483647,优先级最低,保证其释放池子发生在其他所有回调之后。

  • 在主线程执行的代码,通常是写在诸如事件回调、Timer回调内的。这些回调会被 RunLoop 创建好的 AutoreleasePool 环绕着,所以不会出现内存泄漏,开发者也不必显示创建 Pool了。

  • 一个线程只有一个autoreleasePool

  • autoreleasePool嵌套时,只会创建一个page,但是有两个池边界

  observers = (
     "<CFRunLoopObserver 0x600001238280 [0x10b19ab68]>{valid = Yes, activities = 0x1, repeats = Yes, order = -2147483647, callout = _wrapRunLoopWithAutoreleasePoolHandler (0x10dd891b1), context = <CFArray 0x600002d3c1b0 [0x10b19ab68]>{type = mutable-small, count = 0, values = ()}}",
     "<CFRunLoopObserver 0x60000123c500 [0x10b19ab68]>{valid = Yes, activities = 0x20, repeats = Yes, order = 0, callout = _UIGestureRecognizerUpdateObserver (0x10d95b473), context = <CFRunLoopObserver context 0x60000083cfc0>}",
     "<CFRunLoopObserver 0x600001238140 [0x10b19ab68]>{valid = Yes, activities = 0xa0, repeats = Yes, order = 1999000, callout = _beforeCACommitHandler (0x10ddb8dfc), context = <CFRunLoopObserver context 0x7fdae6d020c0>}",
     "<CFRunLoopObserver 0x6000012381e0 [0x10b19ab68]>{valid = Yes, activities = 0xa0, repeats = Yes, order = 2001000, callout = _afterCACommitHandler (0x10ddb8e75), context = <CFRunLoopObserver context 0x7fdae6d020c0>}",
     "<CFRunLoopObserver 0x600001238320 [0x10b19ab68]>{valid = Yes, activities = 0xa0, repeats = Yes, order = 2147483647, callout = _wrapRunLoopWithAutoreleasePoolHandler (0x10dd891b1), context = <CFArray 0x600002d3c1b0 [0x10b19ab68]>{type = mutable-small, count = 0, values = ()}}"
     ),