基于时间轮片方式处理超时任务

4,025 阅读6分钟

背景

最近收到小伙伴的一个吐槽:“项目里的某个函数是同步阻塞的,无法确定其运行时间,某些情况下,可能出现长时间阻塞导致应用无法响应”。为了解决这个问题,他尝试过用子线程+定时器的方式去异步处理,如果超时,则重新调用,但该函数会被频繁调用,意味着每次调用都要创建一个定时器。听到这个场景后,下意识想起之前看到的一篇文章:时间轮片(Timing Wheel)实现心跳机制。该文章主要描述了使用时间轮片的方式去处理TCP心跳连接,从而避免每个连接都要开启一个计时器。明确了时间轮片方式的优势后,便尝试着手实现一个通用的基于时间轮片方式处理超时任务的框架。

时间轮

简单来说,时间轮就是一个循环列表,每个列表中包含一个称为槽的结构,这个结构通常也可以是一个列表,且每隔一定时间就会将指针向前移动。

图片来源

iOS 时间轮实现方案

可以使用一个嵌套数组的形式来定义时间轮结构,并用定时器去定时遍历列表中的元素。

class TimeWheel {
    private var capacity: Int
    private var interval: TimeInterval
    private var timeWheel: [[Any]]
    var index: Int
    private var timer: Timer?
    weak var delegate: TimeWheelDelegate?
}
  • 初始化时,我们需要建立N个空槽,用于存取数据
init(_ capacity: Int, _ interval: TimeInterval) {
    self.capacity = capacity
    self.interval = interval
    self.index = 0
    timeWheel = []
    for _ in 0 ..< capacity { //先填充空数组,创建若干个“空槽”
        self.timeWheel.append([])
    }
}
  • 添加任务时,如未启动定时器,则启动定时器,并把元素添加到当前槽位中
func addObject(_ task: Any) {
    if timer == nil {
        timer = Timer.scheduledTimer(timeInterval: 1.0, target: self, selector: #selector(detectTimeoutItem(_:)), userInfo: nil, repeats: true)
        RunLoop.current.add(timer!, forMode: .common)
    }
    
    if index < timeWheel.count {
        var arr = timeWheel[index]
        arr.append(task)
        timeWheel[index] = arr
    }
}
  • 定时检查,先将位置移动到下一位,然后将对应槽位的元素传递给外部,最后清除该槽位的元素
@objc
private func detectTimeoutItem(_ timer: Timer) {
    moveToNextTimeSlot()
    delegate?.timeoutItems(self.currentObjects(), self)
    removeExpiredObjects()
}

完整代码

protocol TimeWheelDelegate : class {
    func timeoutItems(_ items: [Any]?, _ timeWheel: TimeWheel)
}

class TimeWheel {
    private var capacity: Int
    private var interval: TimeInterval
    private var timeWheel: [[Any]]
    var index: Int
    private var timer: Timer?
    weak var delegate: TimeWheelDelegate?
    
    init(_ capacity: Int, _ interval: TimeInterval) {
        self.capacity = capacity
        self.interval = interval
        self.index = 0
        timeWheel = []
        for _ in 0 ..< capacity { //先填充空数组,创建若干个“空槽”
            self.timeWheel.append([])
        }
    }
    
    func addObject(_ task: Any) {
        if timer == nil {
            timer = Timer.scheduledTimer(timeInterval: 1.0, target: self, selector: #selector(detectTimeoutItem(_:)), userInfo: nil, repeats: true)
            RunLoop.current.add(timer!, forMode: .common)
        }
        
        if index < timeWheel.count {
            var arr = timeWheel[index]
            arr.append(task)
            timeWheel[index] = arr
        }
    }
    
    func currentObjects() -> [Any]? {
        if index < timeWheel.count {
            return timeWheel[index]
        }
        return nil
    }
    
    func cleanup() {
        self.timeWheel.removeAll()
        if timer != nil {
            timer?.invalidate()
            timer = nil
        }
    }
    
    private func removeExpiredObjects() {
        if index < timeWheel.count {
            var arr = timeWheel[index]
            arr.removeAll()
        }
    }
    
    private func moveToNextTimeSlot() {
        index = (index + 1) % timeWheel.count
    }
    
    @objc
    private func detectTimeoutItem(_ timer: Timer) {
        moveToNextTimeSlot()
        delegate?.timeoutItems(self.currentObjects(), self)
        removeExpiredObjects()
    }
}

任务管理

  • 定义一个任务协议,用于定义其通用行为
protocol Task  {
    associatedtype T
    func taskKey() -> String //任务对应的唯一key,用于区分任务
    func doTask() -> T // 实现任务行为
    var completion: ((_ result: T?, _ timeout: Bool) -> Void)? {get set} //返回的异步结果
}
  • 定义一个具体的Task
class NetworkTask: Task {
    typealias T = String
    var completion: ((String?, Bool) -> Void)?
    
    var hostName: String
    
    init(_ name: String) {
        hostName = name
    }
    
    func taskKey() -> String {
        return hostName
    }
    
    func doTask() -> String {
        Thread.sleep(forTimeInterval: Double.random(in: 1...20)) //模拟耗时任务
        return "\(hostName)'s result"
    }
    
}
  • 任务管理

为了保证任务的独立允许,需要创建一个并发队列,且使用字典存储已添加的任务,以便确认任务是按时完成回调的,还是超时导致回调的。

class TaskManager<T: Task> : TimeWheelDelegate {
    
    private var timeWheel: TimeWheel?
    private var timeInterval: TimeInterval
    private var timeoutSeconds: Int
    private var queue: DispatchQueue
    private var callbackDict: Dictionary<String, T>
    
    init(_ timeout: Int, _ timeInterval: TimeInterval) {
        timeoutSeconds = timeout
        self.timeInterval = timeInterval
        queue = DispatchQueue(label: "com.task.queue", qos: .default, attributes: .concurrent, autoreleaseFrequency: .workItem, target: nil)
        callbackDict = [:]
    }
}
  • 添加任务:开启时间轮,且将任务提交到队列中
func appendTask(_ task: T, _ completion:@escaping (_ result: T.T?, _ timeout: Bool) -> (Void)) {
    
    if timeWheel == nil {
        timeWheel = TimeWheel(timeoutSeconds, timeInterval)
        timeWheel?.delegate = self
    }
    
    var task = task
    task.completion = completion
    self.callbackDict[task.taskKey()] = task
    self.timeWheel?.addObject(task) //将任务添加到对应的时间轮槽位中
    
    self.queue.async {
        let result = task.doTask()
        DispatchQueue.main.async { //保证数据的一致性
            let key = task.taskKey()
            if let item = self.callbackDict[key] {
                item.completion?(result, false) //返回按时完成任务的结果
                self.callbackDict.removeValue(forKey: key)
            }
        }
    }
}
  • 处理超时任务:通过定时轮返回的过期数据,将任务超时回调返回。
 func timeoutItems(_ items: [Any]?, _ timeWheel: TimeWheel) {
    if let callbacks = items {
        for callback in callbacks {
            if let item = callback as? T, let task = self.callbackDict[item.taskKey()] {
                task.completion?(nil, true)
                self.callbackDict.removeValue(forKey: task.taskKey())
            }
        }
    }
}

完整代码

class TaskManager<T: Task> : TimeWheelDelegate {
    
    private var timeWheel: TimeWheel?
    private var timeInterval: TimeInterval
    private var timeoutSeconds: Int
    private var queue: DispatchQueue
    private var callbackDict: Dictionary<String, T>
    
    init(_ timeout: Int, _ timeInterval: TimeInterval) {
        timeoutSeconds = timeout
        self.timeInterval = timeInterval
        queue = DispatchQueue(label: "com.task.queue", qos: .default, attributes: .concurrent, autoreleaseFrequency: .workItem, target: nil)
        callbackDict = [:]
    }
    
    func appendTask(_ task: T, _ completion:@escaping (_ result: T.T?, _ timeout: Bool) -> (Void)) {
        
        if timeWheel == nil {
            timeWheel = TimeWheel(timeoutSeconds, timeInterval)
            timeWheel?.delegate = self
        }
        
        var task = task
        task.completion = completion
        self.callbackDict[task.taskKey()] = task
        self.timeWheel?.addObject(task) //将任务添加到对应的时间轮槽位中
        
        self.queue.async {
            let result = task.doTask()
            DispatchQueue.main.async { //保证数据的一致性
                let key = task.taskKey()
                if let item = self.callbackDict[key] {
                    item.completion?(result, false) //返回按时完成任务的结果
                    self.callbackDict.removeValue(forKey: key)
                }
            }
        }
    }
    
    func timeoutItems(_ items: [Any]?, _ timeWheel: TimeWheel) {
        if let callbacks = items {
            for callback in callbacks {
                if let item = callback as? T, let task = self.callbackDict[item.taskKey()] {
                    task.completion?(nil, true)
                    self.callbackDict.removeValue(forKey: task.taskKey())
                }
            }
        }
    }
}

使用示例

定义任务超时时间为10s,并每1s进行检查一次。这里加了一个随机时间添加任务,以便测试到时间轮不同轮的情况。

let manager = TaskManager<NetworkTask>(10, 1)
for i in 0 ..< 5 {
    let task = NetworkTask("host-\(i)")
    DispatchQueue.main.asyncAfter(deadline: .now()+Double.random(in: 0...20.0)) {
        print("task:\(task.hostName) do task in \(Date.init())")
        manager.appendTask(task) { (result, timeout) -> (Void) in
            print("task:\(task.hostName), result:\(result ?? "null"), timeout:\(timeout), time:\(Date.init())")
        }
    }
}

结果数据:
task:host-4 do task in 2020-03-19 11:56:46 +0000
task:host-1 do task in 2020-03-19 11:56:47 +0000
task:host-2 do task in 2020-03-19 11:56:56 +0000
task:host-4, result:null, timeout:true, time:2020-03-19 11:56:56 +0000
task:host-1, result:null, timeout:true, time:2020-03-19 11:56:56 +0000
task:host-2, result:host-2's result, timeout:false, time:2020-03-19 11:57:01 +0000
task:host-3 do task in 2020-03-19 11:57:03 +0000
task:host-0 do task in 2020-03-19 11:57:03 +0000
task:host-0, result:host-0's result, timeout:false, time:2020-03-19 11:57:09 +0000
task:host-3, result:null, timeout:true, time:2020-03-19 11:57:12 +0000

根据结果,可以看到,若任务10s内能按时完成,则返回对应的任务结果,否则返回timeouttrue,并返回一个空结果。

总结

通过这次的事例,实现一个基于时间轮方式来处理超时任务的简单框架,从一定程度上避免了性能的消耗。

demo