首先说明一下,之前在学redis和Nginx的时候,就频繁看见这两个词汇。这属于多路复用I/O的内容,相对来说比较难理解。之前看到很多什么宿管大妈之类的打比方都只能明白个大概,具体里面是什么情况还是很迷糊。 直到今天看到了知乎一位大神的这篇文章如果这篇文章说不清epoll的本质,那就过来掐死我吧!,算是醍醐灌顶了。大概明白了这个过程。然后打算结合其他文章梳理一下,记录一下我的收获。
首先在分析3个IO模型时候,先简单梳理一下流程。当一个网络连接请求到来时候,他会经历以下步骤:
- 通过硬件传输,网卡接收的数据存放到内存中。操作系统就可以去读取它们。
- 当网卡把数据写入到内存后,网卡向cpu发出一个中断信号,操作系统便能得知有新数据到来,再通过网卡中断程序去处理数据。 值得注意的是,上面的网卡将数据写到内存。但是写到内存和通知cpu来处理,还分两个步骤
- 等到数据传到kernel内核space(网卡做的)
- kernel内核区域将数据复制到user space(理解为进程或者线程的缓冲区)(cpu做的)
而根据这两个阶段而不同的操作方法,就会产生多种io模型。这边分析一下其中2种,分别是select和epoll(poll只是select的一个加强版)。
两种IO模型
阻塞 io 模型 blocking IO
为简单起见,我们从普通的recv接收开始分析,先看看下面代码:
//创建socket
int s = socket(AF_INET, SOCK_STREAM, 0);
//绑定
bind(s, ...)
//监听
listen(s, ...)
//接受客户端连接
int c = accept(s, ...)
//接收客户端数据
recv(c, ...);
//将数据打印出来
printf(...)
这是一段最基础的网络编程代码,先新建socket对象,依次调用bind、listen、accept,最后调用recv接收数据。recv是个阻塞方法,当程序运行到recv时,它会一直等待,直到接收到数据才往下执行。
那么阻塞的原理是什么?
工作队列 操作系统为了支持多任务,实现了进程调度的功能,会把进程分为“运行”和“等待”等几种状态。运行状态是进程获得cpu使用权,正在执行代码的状态;等待状态是阻塞状态,比如上述程序运行到recv时,程序会从运行状态变为等待状态,接收到数据后又变回运行状态。操作系统会分时执行各个运行状态的进程,由于速度很快,看上去就像是同时执行多个任务。
下图中的计算机中运行着A、B、C三个进程,其中进程A执行着上述基础网络程序,一开始,这3个进程都被操作系统的工作队列所引用,处于运行状态,会分时执行。

等待队列
当进程A执行到创建socket的语句时,操作系统会创建一个由文件系统管理的socket对象(如下图)。这个socket对象包含了发送缓冲区、接收缓冲区、等待队列等成员。等待队列是个非常重要的结构,它指向所有需要等待该socket事件的进程。

当程序执行到recv时,操作系统会将进程A从工作队列移动到该socket的等待队列中(如下图)。由于工作队列只剩下了进程B和C,依据进程调度,cpu会轮流执行这两个进程的程序,不会执行进程A的程序。所以进程A被阻塞,不会往下执行代码,也不会占用cpu资源。

ps:操作系统添加等待队列只是添加了对这个“等待中”进程的引用,以便在接收到数据时获取进程对象、将其唤醒,而非直接将进程管理纳入自己之下。上图为了方便说明,直接将进程挂到等待队列之下。
唤醒进程
当socket接收到数据后,操作系统将该socket等待队列上的进程重新放回到工作队列,该进程变成运行状态,继续执行代码。也由于socket的接收缓冲区已经有了数据,recv可以返回接收到的数据。
最后,总结一下内核接收网络数据全过程
这一步,贯穿网卡、中断、进程调度的知识,叙述阻塞recv下,内核接收数据全过程。

唤醒进程的过程如下图所示。

我们用io模型角度来分析一下:
如下图所示,进程在recv阻塞期间,计算机收到了对端传送的数据(步骤①)。数据经由网卡传送到内存(步骤②),然后网卡通过中断信号通知cpu有数据到达,cpu执行中断程序(步骤③)。此处的中断程序主要有两项功能,先将网络数据写入到对应socket的接收缓冲区里面(步骤④),再唤醒进程A(步骤⑤),重新将进程A放入工作队列中。
以上这个过程,就是最基本的阻塞 io 模型 blocking IO。

应用层有数据过来,会调用recvfrom方法,但是这个时候应用层的数据还没复制到kernel中,将应用层数据复制到kerne这个阶段是需要时间的,所以recvfrom方法会阻塞,当内核中的数据准备好之后,recvfrom方法还不会返回,而是会发起一个系统调用将kernel中的数据复制到进程的缓冲区中,也就是user space,当这个工作完成之后,recvfrom才会返回并解除程序的阻塞。
服务端需要管理多个客户端连接,而recv只能监视单个socket,这种矛盾下,人们开始寻找监视多个socket的方法。epoll的要义是高效的监视多个socket。从历史发展角度看,必然先出现一种不太高效的方法,人们再加以改进。只有先理解了不太高效的方法,才能够理解epoll的本质。那么,我们就要引入一种新的io模型--io多路复用模型 IO multiplexing。
io多路复用模型 IO multiplexing
其中分为3个:
- select
- poll
- epoll
这边主要分析select和epoll:
为方便理解,我们先复习select的用法。在如下的代码中,先准备一个数组(下面代码中的fds),让fds存放着所有需要监视的socket。然后调用select,如果fds中的所有socket都没有数据,select会阻塞,直到有一个socket接收到数据,select返回,唤醒进程。用户可以遍历fds,通过FD_ISSET判断具体哪个socket收到数据,然后做出处理。
int s = socket(AF_INET, SOCK_STREAM, 0);
bind(s, ...)
listen(s, ...)
int fds[] = 存放需要监听的socket
while(1){
int n = select(..., fds, ...)
for(int i=0; i < fds.count; i++){
if(FD_ISSET(fds[i], ...)){
//fds[i]的数据处理
}
}
}
select的流程
select的实现思路很直接。假如程序同时监视如下图的sock1、sock2和sock3三个socket,那么在调用select之后,操作系统把进程A分别加入这三个socket的等待队列中。

当任何一个socket收到数据后,中断程序将唤起进程。下图展示了sock2接收到了数据的处理流程。

所谓唤起进程,就是将进程从所有的等待队列中移除,加入到工作队列里面。如下图所示。

经由这些步骤,当进程A被唤醒后,它知道至少有一个socket接收了数据。程序只需遍历一遍socket列表,就可以得到就绪的socket。
这样,我们就可以管理多个socket了,但是这样做,有以下一些缺点。
- 每次调用select都需要将进程加入到所有监视socket的等待队列,每次唤醒都需要从每个队列中移除。这里涉及了两次遍历,而且每次都要将整个fds列表传递给内核(从 user space把 FD_SET复制到 kernel(约线性时间成本)),有一定的开销。正是因为遍历操作开销大,出于效率的考量,才会规定select的最大监视数量,默认只能监视1024个socket。
- 进程被唤醒后,程序并不知道哪些socket收到数据,还需要遍历一次。

补充说明: 本节只解释了select的一种情形。当程序调用select时,内核会先遍历一遍socket,如果有一个以上的socket接收缓冲区有数据,那么select直接返回,不会阻塞。这也是为什么select的返回值有可能大于1的原因之一。如果没有socket有数据,进程才会阻塞。
epoll的流程
epoll是在select出现N多年后才被发明的,是select和poll的增强版本。epoll通过以下一些措施来改进效率。
措施一:功能分离
select低效的原因之一是将“维护等待队列”和“阻塞进程”两个步骤合二为一。如下图所示,每次调用select都需要这两步操作,然而大多数应用场景中,需要监视的socket相对固定,并不需要每次都修改。epoll将这两个操作分开,先用epoll_ctl维护等待队列,再调用epoll_wait阻塞进程。显而易见的,效率就能得到提升。

为方便理解后续的内容,我们先复习下epoll的用法。如下的代码中,先用epoll_create创建一个epoll对象epfd,再通过epoll_ctl将需要监视的socket添加到epfd中,最后调用epoll_wait等待数据。
int s = socket(AF_INET, SOCK_STREAM, 0);
bind(s, ...)
listen(s, ...)
int epfd = epoll_create(...);
epoll_ctl(epfd, ...); //将所有需要监听的socket添加到epfd中
while(1){
int n = epoll_wait(...)
for(接收到数据的socket){
//处理
}
}
功能分离,使得epoll有了优化的可能。
措施二:就绪列表
select低效的另一个原因在于程序不知道哪些socket收到数据,只能一个个遍历。如果内核维护一个“就绪列表”,引用收到数据的socket,就能避免遍历。如下图所示,计算机共有三个socket,收到数据的sock2和sock3被rdlist(就绪列表)所引用。当进程被唤醒后,只要获取rdlist的内容,就能够知道哪些socket收到数据。

那么具体流程是怎么样呢?以示例和图表来讲解epoll的原理和流程。
创建epoll对象
如下图所示,当某个进程调用epoll_create方法时,内核会创建一个eventpoll对象(也就是程序中epfd所代表的对象)。eventpoll对象也是文件系统中的一员,和socket一样,它也会有等待队列。

创建一个代表该epoll的eventpoll对象是必须的,因为内核要维护“就绪列表”等数据,“就绪列表”可以作为eventpoll的成员。(注意,这eventpoll对象是内核创建的,和select在user space的fds不同。)
维护监视列表
创建epoll对象后,可以用epoll_ctl添加或删除所要监听的socket。以添加socket为例,如下图,如果通过epoll_ctl添加sock1、sock2和sock3的监视,内核会将eventpoll添加到这三个socket的等待队列中。

当socket收到数据后,中断程序会操作eventpoll对象,而不是直接操作进程。
接收数据
当socket收到数据后,中断程序会给eventpoll的“就绪列表”添加socket引用。如下图展示的是sock2和sock3收到数据后,中断程序让rdlist引用这两个socket。

eventpoll对象相当于是socket和进程之间的中介,socket的数据接收并不直接影响进程,而是通过改变eventpoll的就绪列表来改变进程状态。
当程序执行到epoll_wait时,如果rdlist已经引用了socket,那么epoll_wait直接返回,如果rdlist为空,阻塞进程。
阻塞和唤醒进程
假设计算机中正在运行进程A和进程B,在某时刻进程A运行到了epoll_wait语句。如下图所示,内核会将进程A放入eventpoll的等待队列中,阻塞进程。

当socket接收到数据,中断程序一方面修改rdlist,另一方面唤醒eventpoll等待队列中的进程,进程A再次进入运行状态(如下图)。也因为rdlist的存在,进程A可以知道哪些socket发生了变化。

那么,epoll解决的问题是啥呢?
- epoll没有fd数量限制:epoll没有这个限制,我们知道每个epoll监听一个fd,所以最大数量与能打开的fd数量有关,一个g的内存的机器上,能打开10万个左右
- epoll不需要每次都从user space 将fd set复制到内核kernel:epoll在用epoll_ctl函数进行事件注册的时候,已经将fd复制到内核中,所以不需要每次都重新复制一次
- select 和 poll 都是主动轮询机制,需要拜访每一个 FD;epoll是被动触发方式,给fd注册了相应事件的时候,我们为每一个fd指定了一个回调函数,当数据准备好之后,就会把就绪的fd加入一个就绪的队列中,epoll_wait的工作方式实际上就是在这个就绪队列中查看有没有就绪的fd,如果有,就唤醒就绪队列上的等待者,然后调用回调函数。
- 虽然epoll。poll。epoll都需要查看是否有fd就绪,但是epoll之所以是被动触发,就在于它只要去查找就绪队列中有没有fd,就绪的fd是主动加到队列中,epoll不需要一个个轮询确认。
换一句话讲,就是select和poll只能通知有fd已经就绪了,但不能知道究竟是哪个fd就绪,所以select和poll就要去主动轮询一遍找到就绪的fd。而epoll则是不但可以知道有fd可以就绪,而且还具体可以知道就绪fd的编号,所以直接找到就可以,不用轮询。
(补充)epoll的实现细节
以下会有2个问题:
- 就绪队列应该应使用什么数据结构?
- eventpoll应使用什么数据结构来管理通过epoll_ctl添加或删除的socket?
如下图所示,eventpoll包含了lock、mtx、wq(等待队列)、rdlist等成员。rdlist和rbr是我们所关心的。

就绪列表的数据结构
就绪列表引用着就绪的socket,所以它应能够快速的插入数据。 程序可能随时调用epoll_ctl添加监视socket,也可能随时删除。当删除时,若该socket已经存放在就绪列表中,它也应该被移除。 所以就绪列表应是一种能够快速插入和删除的数据结构。双向链表就是这样一种数据结构,epoll使用双向链表来实现就绪队列(对应上图的rdllist)。
索引结构
既然epoll将“维护监视队列”和“进程阻塞”分离,也意味着需要有个数据结构来保存监视的socket。至少要方便的添加和移除,还要便于搜索,以避免重复添加。红黑树是一种自平衡二叉查找树,搜索、插入和删除时间复杂度都是O(log(N)),效率较好。epoll使用了红黑树作为索引结构(对应上图的rbr)。
ps:因为操作系统要兼顾多种功能,以及由更多需要保存的数据,rdlist并非直接引用socket,而是通过epitem间接引用,红黑树的节点也是epitem对象。同样,文件系统也并非直接引用着socket。为方便理解,本文中省略了一些间接结构。