常用信息检索评价指标整理【 MAP nDCG ERR F-measure Precision Recall】

·  阅读 1792

blog.csdn.net/lsgqjh/arti…

相关文献:

learning to rank : en.wikipedia.org/wiki/Learni… MRR: en.wikipedia.org/wiki/Mean_r… Precision and Recall: en.wikipedia.org/wiki/Precis… chales‘blog : charleshm.github.io/2016/03/Mod…

一 查准率与查全率

此处输入图片的描述

Precision(P)

是指检索得到的文档中相关文档所占的比例,公式如下:

这里写图片描述

如果我们只考虑召回的所有结果的top n文档的 查准率, 叫做 P@n

Recall: (R)

查全率率是指所有相关文档中被召回到的比例,公式如下:

这里写图片描述

如果我们只考虑召回的所有结果的top n文档的 查准率, 叫做 R@n

即使仅仅观察查全率为100% 也没多大意义, 虽然相关的文档 被全部召回了, 但是往往代价是伴随着更多的不相关文档被召回,导致查准率下降, 所以应该同时考虑两个指标,尽可能的都要高。

F-measure

一种同时考虑准确率和召回率的指标。公式如下:

F = \frac{2 \times precision \times recall}{(precision+recall)}

可以看出F的取值范围从0到1。另外还有一种F的变体如下所示:

943d5bcb114e485d8b18053e106640e5.png

常用的两种设置是F2F0.5,前者中recall重要程度是precision的两倍,后者则相反,precision重要程度是recall的两倍。

二 Mean average precision(MAP)

准确率和召回率都只能衡量检索性能的一个方面,最理想的情况肯定是准确率和召回率都比较高。当我们想提高召回率的时候,肯定会影响准确率,所以可以把准确率看做是召回率的函数,即:P=f(R),也就是随着召回率从0到1,准确率的变化情况。那么就可以对函数P=f(R)在R上进行积分,可以求P的期望均值。公式如下:

这里写图片描述

微分:

这里写图片描述

其中k是召回文档中的某doc rank位置, n是所有召回文档数,P(k)为cut-off k in the list准确率,\Delta r(k)k-1k的召回率变化量

等价于下面的公式:

这里写图片描述

rel(k) 值为0或1,如果doc k是相关文档,rel(k)为1,否则为0,

AvePAveP的计算方式可以简单的认为是:

AveP=\frac{1}{R}\times\sum_{r=1}^R \frac{r}{position(r)}

其中R表示相关文档的总个数,position(r)表示,结果列表从前往后看,第rr个相关文档在列表中的位置。比如,有三个相关文档,位置分别为1、3、6,那么AveP=\frac{1}{3}\times (\frac{1}{1}+\frac{2}{3}+\frac{3}{6})。在编程的时候需要注意,位置和第i个相关文档,都是从1开始的,不是从0开始的。 AveP意义是在召回率从0到1逐步提高的同时,对每个R位置上的P进行相加,也即要保证准确率比较高,才能使最后的AveP比较大。

最后~,MAP计算所有Query的平均准确率分数:

MAP=\frac{\sum_{q=1}^Q AveP(q)}{Q}

Q为query数目总量。

三 Mean reciprocal rank(MRR)

MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|}\frac{1}{rank_i}

where rank_irefers to the rank position of the first relevant document for the i-th query.

第一个正确答案的排名的倒数。MRR是指多个查询语句的排名倒数的均值

这里写图片描述

四 Expected reciprocal rank (ERR)

一种考虑是,一个文档是否被用户点击和排在它前面的文档有很大的关系,比如排在前面的文档都是不相关文档,那么它被点击的概率就高,如果排它前面的文档都是非常相关的文档,那么它被点击的概率就很低。Cascade Models假设用户从排名由高到底依次查看文档,一旦文档满足了用户的需求,则停止查看后续的文档。用RiRi表示用户只看在位置ii上的文档后就不在需要查看其它文档的概率,显然文档的相关度越高,R_i越大。那么用户在位置i停止的概率公式如下:

PP_r=\prod_{i=1}^{r-1}(1-R_i)R_r

ERR表示用户的需求被满足时停止的位置的倒数的期望。首先是计算用户在位置rr停止的概率PP_r,如下所示:

PP_r=\prod_{i=1}^{r-1}(1-R_i)R_r

其中R_i是关于文档相关度等级的函数,可以选取如下的函数:

54e11137974c4aa78bccbb9db6fe3943.png

那么ERR的计算公式如下:

43f7b714dbcc427b9897afd1be4bf027.png

更通用一点,ERR不一定计算用户需求满足时停止的位置的倒数的期望,可以是其它基于位置的函数φ(r),只要满足φ(0)=1,且φ(r)→0随着r→∞。比如DCG中的\varphi(r)=\frac{1}{log_2 (r+1)} ERR论文: web.archive.org/web/2012022…

五 Discounted cumulative gain (DCG)

在MAP计算公式中,文档只有相关不相关两种,而在nDCG中,文档的相关度可以分多个等级进行打分。

Cumulative Gain (CG)

计算DCG之前先进行计算CG, 公式如下:

CG=\sum_{i=1}^p rel_i

rel_i是位置i处的相关性,上述公式计算了前p个结果的相关性总和 注意到召回结果的doc间任意排序,对CG函数值是无影响的,比如: 召回的三个文档rank依次是doc1,doc2,doc3,相关性依次是 3,2,0,而如果 rank顺序为doc3,doc2,doc1,其CG值依然为5. 而前者排序是最合理的,但CG值相同。

Discounted Cumulative Gain(DCG)

所以要引入对位置信息的度量计算,既要考虑文档的相关度等级,也要考虑它所在的位置信息。假设每个位置按照从小到大的排序, 它们的价值依次递减,意味着,相关度越高的如果排序越靠后,那么分数就应该受到惩罚, 可以假设第i个位置的价值是\frac{1}{log_2(i+1)},那么排在第i个位置的文档所产生的效益就是rel_i \times\frac{1}{log_2 (i+1)}=\frac{rel_i}{log_2 (i+1)},公式如下:

e2df7ee9c7894e4887022cdaa6e99530.png

另一种比较常用的,用来增加相关度影响比重的DCG计算方式是:

6960fa612da94422b58ad5795517b878.png

Normalized DCG (NDCG)

由于每个查询语句所能检索到的结果文档集合长度不一,p值的不同会对DCG的计算有较大的影响。所以不能对不同查询语句的DCG 进行求平均,需要进行归一化处理。nDCG就是用IDCG进行归一化处理,表示当前DCG比IDCG还差多大的距离。公式如下:

nDCG_p = \frac{DCG_p}{IDCG_p}

IDCG为理想情况下最大的DCG值

IDCG_p =\sum_{i=1}^{|REL|} \frac{2^{rel_i} -1}{log_2 (i+1)}

其中|REL|表示,文档按照相关性从大到小的顺序排序,取前p个文档组成的集合。也就是按照最优的方式对文档进行排序。

如何计算

假如一个query召回的文档前6个为 D=\{d_1, d_2, d_3,d_4,d_5, d_6\} 相关性分值依次为 3,2,3,0,1,2 意味着d_1 的相关性分值为3,d_2相关性分值为2,以此类推。 CG值为:

此处输入图片的描述
可以看到只是简单的对召回对前6个文档分数简单的加和,并没有考虑doc所在的位置对排序结果的评分影响。而DCG的思想是对 越高相关性的doc越往后排会给予一定的更大惩罚项。 DCG的计算如下
此处输入图片的描述
因为每个query召回文档数目不同,DCG间无法统一比较,所以需要归一化。 先计算IDCG,我们假设实际上此query召回了八个doc,除了上面6个doc,还有doc_7 分值为3,dooc_8分值为0,理想rank情况下的相关分数顺序为: 3,3,3,2,2,1,0 计算IDCG@6: IDCG_6= 8.740

nIDCG_6=\frac{DCG_6}{IDCG_6}=\frac{6.861}{8.740}=0.785

局限性

  • nDCG不能惩罚“坏”文档,比如两个query返回了两列结果,分值分别为1,1,1, 1,1,10 那么两者的nDCG是一样的。注意把Excellent,Fair,Bad映射为分值数字最好为1,0, -1,而不是类似于2,1,0
  • nDCG不能惩罚“缺失” 的doc,比如两个query返回了两列结果,分值分别为1,1,1,1,1,1,1,1.前者计算DCG@3,后者计算DCG@5 的话,两个doc都可以被认为是好的。解决方法是应该采取固定的topk大小来计算DCG@k,并在doc不足的query召回结果后面补上“最小权重分值”,如1,1,1,0,0,1,1,1,1,1 两者均计算nDCG@5

六 分类模型上 Precision 和 Recall的含义

混淆矩阵

True Positive(真正, TP):将正类预测为正类数. True Negative(真负 , TN):将负类预测为负类数. False Positive(假正, FP):将负类预测为正类数 →→ 误报 (Type I error). False Negative(假负 , FN):将正类预测为负类数 →→ 漏报 (Type II error).

ef436e252efd4e77a710d2df4662e135.png

精确率(precision)定义为:

P = \frac{TP}{TP+FP} \tag{1}

需要注意的是精确率(precision)和准确率(accuracy)是不一样的,

ACC = \frac{TP + TN}{TP+TN+FP+FN}

在正负样本不平衡的情况下,准确率这个评价指标有很大的缺陷。比如在互联网广告里面,点击的数量是很少的,一般只有千分之几,如果用acc,即使全部预测成负类(不点击)acc 也有 99% 以上,没有意义。

召回率(recall,sensitivity,true positive rate)定义为:

R = \frac{TP}{TP+FN} \tag{2}

此外,还有 F1F1 值,是精确率和召回率的调和均值,

\frac{2}{F_1} = \frac{1}{P} + \frac{1}{R}
F_1 = \frac{2TP}{2TP + FP + FN} \tag{3}

精确率和准确率都高的情况下,F1F1 值也会高。

通俗版本

实际上非常简单,精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是对的。那么预测为正就有两种可能了,一种就是把正类预测为正类(TP),另一种就是把负类预测为正类(FP)。 而召回率是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了。那也有两种可能,一种是把原来的正类预测成正类(TP),另一种就是把原来的正类预测为负类(FN)。

fa9c9a963a6e4ddaa959e2af6b1ee093.png

分类:
人工智能
标签:
分类:
人工智能
标签: