Dubbo源码解析(九)远程通信——Transport层

462 阅读24分钟

远程通讯——Transport层

目标:介绍Transport层的相关设计和逻辑、介绍dubbo-remoting-api中的transport包内的源码解析。

前言

先预警一下,该文篇幅会很长,做好心理准备。Transport层也就是网络传输层,在远程通信中必然会涉及到传输。它在dubbo 的框架设计中也处于倒数第二层,当然最底层是序列化,这个后面介绍。官方文档对Transport层的解释是抽象 mina 和 netty 为统一接口,以 Message 为中心,扩展接口为 Channel、Transporter、Client、Server、Codec。那我们现在先来看这个包下面的类图:

transport包类图

可以看到有四个包继承了AbstractChannel、AbstractServer、AbstractClient。也就是说现在Transport层是抽象mina、netty以及grizzly为统一接口。看完类图,再来看看包结构:

transport包结构

下面的讲解大致会按照类图中类的顺序往下讲,尽量把client、server、channel、codec、dispacher五部分涉及到的内容一起讲解。

源码解析

(一)AbstractPeer

public abstract class AbstractPeer implements Endpoint, ChannelHandler {
    private final ChannelHandler handler;

    private volatile URL url;
    /**
     * 是否正在关闭
     */
    // closing closed means the process is being closed and close is finished
    private volatile boolean closing;
    /**
     * 是否关闭完成
     */
    private volatile boolean closed;

    public AbstractPeer(URL url, ChannelHandler handler) {
        if (url == null) {
            throw new IllegalArgumentException("url == null");
        }
        if (handler == null) {
            throw new IllegalArgumentException("handler == null");
        }
        this.url = url;
        this.handler = handler;
    }
}

该类实现了Endpoint和ChannelHandler两个接口,要关注的两个点:

  1. 实现ChannelHandler接口并且有在属性中还有一个handler,下面很多实现方法也是直接调用了handler方法,这种模式叫做装饰模式,这样做可以对装饰对象灵活的增强功能。对装饰模式不懂的朋友可以google一下。有很多例子介绍。
  2. 在该类中有closing和closed属性,在Endpoint中有很多关于关闭通道的操作,会有关闭中和关闭完成的状态区分,在该类中就缓存了这两个属性来判断关闭的状态。

下面我就介绍该类中的send方法,其他方法比较好理解,到时候可以直接看源码:

@Override
public void send(Object message) throws RemotingException {
    // url中sent的配置项
    send(message, url.getParameter(Constants.SENT_KEY, false));
}

该配置项是选择是否等待消息发出:

  1. sent值为true,等待消息发出,消息发送失败将抛出异常。
  2. sent值为false,不等待消息发出,将消息放入 IO 队列,即刻返回。

对该类还有点糊涂的朋友,记住在ChannelHandler接口,该类就做了装饰模式中装饰角色,在Endpoint接口,只是维护了通道的正在关闭和关闭完成两个状态。

(二)AbstractEndpoint

public abstract class AbstractEndpoint extends AbstractPeer implements Resetable {

    /**
     * 日志记录
     */
    private static final Logger logger = LoggerFactory.getLogger(AbstractEndpoint.class);

    /**
     * 编解码器
     */
    private Codec2 codec;

    /**
     * 超时时间
     */
    private int timeout;

    /**
     * 连接超时时间
     */
    private int connectTimeout;

    public AbstractEndpoint(URL url, ChannelHandler handler) {
        super(url, handler);
        this.codec = getChannelCodec(url);
        // 优先从url配置中取,如果没有,默认为1s
        this.timeout = url.getPositiveParameter(Constants.TIMEOUT_KEY, Constants.DEFAULT_TIMEOUT);
        // 优先从url配置中取,如果没有,默认为3s
        this.connectTimeout = url.getPositiveParameter(Constants.CONNECT_TIMEOUT_KEY, Constants.DEFAULT_CONNECT_TIMEOUT);
    }

    /**
     * 从url中获得编解码器的配置,并且返回该实例
     * @param url
     * @return
     */
    protected static Codec2 getChannelCodec(URL url) {
        String codecName = url.getParameter(Constants.CODEC_KEY, "telnet");
        // 优先从Codec2的扩展类中找
        if (ExtensionLoader.getExtensionLoader(Codec2.class).hasExtension(codecName)) {
            return ExtensionLoader.getExtensionLoader(Codec2.class).getExtension(codecName);
        } else {
            return new CodecAdapter(ExtensionLoader.getExtensionLoader(Codec.class)
                    .getExtension(codecName));
        }
    }

}

该类是端点的抽象类,其中封装了编解码器以及两个超时时间。基于dubbo 的SPI机制,获得相应的编解码器实现对象,编解码器优先从Codec2的扩展类中寻找。

下面来看看该类中的reset方法:

@Override
public void reset(URL url) {
    if (isClosed()) {
        throw new IllegalStateException("Failed to reset parameters "
                + url + ", cause: Channel closed. channel: " + getLocalAddress());
    }
    try {
        // 判断重置的url中有没有携带timeout,有的话重置
        if (url.hasParameter(Constants.TIMEOUT_KEY)) {
            int t = url.getParameter(Constants.TIMEOUT_KEY, 0);
            if (t > 0) {
                this.timeout = t;
            }
        }
    } catch (Throwable t) {
        logger.error(t.getMessage(), t);
    }
    try {
        // 判断重置的url中有没有携带connect.timeout,有的话重置
        if (url.hasParameter(Constants.CONNECT_TIMEOUT_KEY)) {
            int t = url.getParameter(Constants.CONNECT_TIMEOUT_KEY, 0);
            if (t > 0) {
                this.connectTimeout = t;
            }
        }
    } catch (Throwable t) {
        logger.error(t.getMessage(), t);
    }
    try {
        // 判断重置的url中有没有携带codec,有的话重置
        if (url.hasParameter(Constants.CODEC_KEY)) {
            this.codec = getChannelCodec(url);
        }
    } catch (Throwable t) {
        logger.error(t.getMessage(), t);
    }
}

@Deprecated
public void reset(com.alibaba.dubbo.common.Parameters parameters) {
    reset(getUrl().addParameters(parameters.getParameters()));
}

这个方法是Resetable接口中的方法,可以看到以前的reset实现方法都加上了@Deprecated注解,不推荐使用了,因为这种实现方式重置太复杂,需要把所有参数都设置一遍,比如我只想重置一个超时时间,但是其他值不变,如果用以前的reset,我需要在url中把所有值都带上,就会很多余。现在用新的reset,每次只关心我需要重置的值,只更改为需要重置的值。比如上面的代码所示,只想修改超时时间,那我就只在url中携带超时时间的参数。

(三)AbstractServer

该类继承了AbstractEndpoint并且实现Server接口,是服务器抽象类。重点实现了服务器的公共逻辑,比如发送消息,关闭通道,连接通道,断开连接等。并且抽象了打开和关闭服务器两个方法。

1.属性

/**
 * 服务器线程名称
 */
protected static final String SERVER_THREAD_POOL_NAME = "DubboServerHandler";
private static final Logger logger = LoggerFactory.getLogger(AbstractServer.class);
/**
 * 线程池
 */
ExecutorService executor;
/**
 * 服务地址,也就是本地地址
 */
private InetSocketAddress localAddress;
/**
 * 绑定地址
 */
private InetSocketAddress bindAddress;
/**
 * 最大可接受的连接数
 */
private int accepts;
/**
 * 空闲超时时间,单位是s
 */
private int idleTimeout = 600; //600 seconds

该类的属性比较好理解,就是稍微注意一下idleTimeout的单位是s。

2.构造函数

public AbstractServer(URL url, ChannelHandler handler) throws RemotingException {
    super(url, handler);
    // 从url中获得本地地址
    localAddress = getUrl().toInetSocketAddress();

    // 从url配置中获得绑定的ip
    String bindIp = getUrl().getParameter(Constants.BIND_IP_KEY, getUrl().getHost());
    // 从url配置中获得绑定的端口号
    int bindPort = getUrl().getParameter(Constants.BIND_PORT_KEY, getUrl().getPort());
    // 判断url中配置anyhost是否为true或者判断host是否为不可用的本地Host
    if (url.getParameter(Constants.ANYHOST_KEY, false) || NetUtils.isInvalidLocalHost(bindIp)) {
        bindIp = NetUtils.ANYHOST;
    }
    bindAddress = new InetSocketAddress(bindIp, bindPort);
    // 从url中获取配置,默认值为0
    this.accepts = url.getParameter(Constants.ACCEPTS_KEY, Constants.DEFAULT_ACCEPTS);
    // 从url中获取配置,默认600s
    this.idleTimeout = url.getParameter(Constants.IDLE_TIMEOUT_KEY, Constants.DEFAULT_IDLE_TIMEOUT);
    try {
        // 开启服务器
        doOpen();
        if (logger.isInfoEnabled()) {
            logger.info("Start " + getClass().getSimpleName() + " bind " + getBindAddress() + ", export " + getLocalAddress());
        }
    } catch (Throwable t) {
        throw new RemotingException(url.toInetSocketAddress(), null, "Failed to bind " + getClass().getSimpleName()
                + " on " + getLocalAddress() + ", cause: " + t.getMessage(), t);
    }
    // 获得线程池
    //fixme replace this with better method
    DataStore dataStore = ExtensionLoader.getExtensionLoader(DataStore.class).getDefaultExtension();
    executor = (ExecutorService) dataStore.get(Constants.EXECUTOR_SERVICE_COMPONENT_KEY, Integer.toString(url.getPort()));
}

构造函数大部分逻辑就是从url中取配置,存到缓存中,并且做了开启服务器的操作。具体的看上面的注释,还是比较清晰的。

3.reset方法

@Override
public void reset(URL url) {
    if (url == null) {
        return;
    }
    try {
        // 重置accepts的值
        if (url.hasParameter(Constants.ACCEPTS_KEY)) {
            int a = url.getParameter(Constants.ACCEPTS_KEY, 0);
            if (a > 0) {
                this.accepts = a;
            }
        }
    } catch (Throwable t) {
        logger.error(t.getMessage(), t);
    }
    try {
        // 重置idle.timeout的值
        if (url.hasParameter(Constants.IDLE_TIMEOUT_KEY)) {
            int t = url.getParameter(Constants.IDLE_TIMEOUT_KEY, 0);
            if (t > 0) {
                this.idleTimeout = t;
            }
        }
    } catch (Throwable t) {
        logger.error(t.getMessage(), t);
    }
    try {
        // 重置线程数配置
        if (url.hasParameter(Constants.THREADS_KEY)
                && executor instanceof ThreadPoolExecutor && !executor.isShutdown()) {
            ThreadPoolExecutor threadPoolExecutor = (ThreadPoolExecutor) executor;
            // 获得url配置中的线程数
            int threads = url.getParameter(Constants.THREADS_KEY, 0);
            // 获得线程池允许的最大线程数
            int max = threadPoolExecutor.getMaximumPoolSize();
            // 返回核心线程数
            int core = threadPoolExecutor.getCorePoolSize();
            // 设置最大线程数和核心线程数
            if (threads > 0 && (threads != max || threads != core)) {
                if (threads < core) {
                    // 如果设置的线程数比核心线程数少,则直接设置核心线程数
                    threadPoolExecutor.setCorePoolSize(threads);
                    if (core == max) {
                        // 当核心线程数和最大线程数相等的时候,把最大线程数也重置
                        threadPoolExecutor.setMaximumPoolSize(threads);
                    }
                } else {
                    // 当大于核心线程数时,直接设置最大线程数
                    threadPoolExecutor.setMaximumPoolSize(threads);
                    // 只有当核心线程数和最大线程数相等的时候才设置核心线程数
                    if (core == max) {
                        threadPoolExecutor.setCorePoolSize(threads);
                    }
                }
            }
        }
    } catch (Throwable t) {
        logger.error(t.getMessage(), t);
    }
    // 重置url
    super.setUrl(getUrl().addParameters(url.getParameters()));
}

该类中的reset方法做了三个值的重置,分别是最大可连接的客户端数量、空闲超时时间以及线程池的两个配置参数。其中要注意核心线程数和最大线程数的区别。举个例子,核心线程数就像是工厂正式工,最大线程数,就是工厂临时工作量加大,请了一批临时工,临时工加正式工的和就是最大线程数,等这批任务结束后,临时工要辞退的,而正式工会留下。

还有send、close、connected、disconnected等方法比较简单,如果有兴趣,可以到我的GitHub查看,地址文章末尾会给出。

(四)AbstractClient

该类是客户端的抽象类,继承了AbstractEndpoint类,实现了Client接口,该类中也是做了客户端公用的重连逻辑,抽象了打开客户端、关闭客户端、连接服务器、断开服务器连接以及获得通道方法,让子类去重点关注这几个方法。

1.属性

/**
 * 客户端线程名称
 */
protected static final String CLIENT_THREAD_POOL_NAME = "DubboClientHandler";
private static final Logger logger = LoggerFactory.getLogger(AbstractClient.class);
/**
 * 线程池id
 */
private static final AtomicInteger CLIENT_THREAD_POOL_ID = new AtomicInteger();
/**
 * 重连定时任务执行器
 */
private static final ScheduledThreadPoolExecutor reconnectExecutorService = new ScheduledThreadPoolExecutor(2, new NamedThreadFactory("DubboClientReconnectTimer", true));
/**
 * 连接锁
 */
private final Lock connectLock = new ReentrantLock();
/**
 * 发送消息时,若断开,是否重连
 */
private final boolean send_reconnect;
/**
 * 重连次数
 */
private final AtomicInteger reconnect_count = new AtomicInteger(0);
/**
 * 在这之前是否调用重新连接的错误日志
 */
// Reconnection error log has been called before?
private final AtomicBoolean reconnect_error_log_flag = new AtomicBoolean(false);
/**
 * 重连 warning 的间隔.(waring多少次之后,warning一次),也就是错误多少次后告警一次错误
 */
// reconnect warning period. Reconnect warning interval (log warning after how many times) //for test
private final int reconnect_warning_period;
/**
 * 关闭超时时间
 */
private final long shutdown_timeout;
/**
 * 线程池
 */
protected volatile ExecutorService executor;
/**
 * 重连执行任务
 */
private volatile ScheduledFuture<?> reconnectExecutorFuture = null;
// the last successed connected time
/**
 * 最后成功连接的时间
 */
private long lastConnectedTime = System.currentTimeMillis();

上述属性大部分跟重连有关,该类最重要的也是封装了重连的逻辑。

2.构造函数

public AbstractClient(URL url, ChannelHandler handler) throws RemotingException {
    super(url, handler);

    // 从url中获得是否重连的配置,默认为false
    send_reconnect = url.getParameter(Constants.SEND_RECONNECT_KEY, false);

    // 从url中获得关闭超时时间,默认为900s
    shutdown_timeout = url.getParameter(Constants.SHUTDOWN_TIMEOUT_KEY, Constants.DEFAULT_SHUTDOWN_TIMEOUT);

    // The default reconnection interval is 2s, 1800 means warning interval is 1 hour.
    // 重连的默认值是2s,重连 warning 的间隔默认是1800,当出错的时候,每隔1800*2=3600s报警一次
    reconnect_warning_period = url.getParameter("reconnect.waring.period", 1800);

    try {
        // 打开客户端
        doOpen();
    } catch (Throwable t) {
        close();
        throw new RemotingException(url.toInetSocketAddress(), null,
                "Failed to start " + getClass().getSimpleName() + " " + NetUtils.getLocalAddress()
                        + " connect to the server " + getRemoteAddress() + ", cause: " + t.getMessage(), t);
    }
    try {
        // connect.
        // 连接服务器
        connect();
        if (logger.isInfoEnabled()) {
            logger.info("Start " + getClass().getSimpleName() + " " + NetUtils.getLocalAddress() + " connect to the server " + getRemoteAddress());
        }
    } catch (RemotingException t) {
        if (url.getParameter(Constants.CHECK_KEY, true)) {
            close();
            throw t;
        } else {
            logger.warn("Failed to start " + getClass().getSimpleName() + " " + NetUtils.getLocalAddress()
                    + " connect to the server " + getRemoteAddress() + " (check == false, ignore and retry later!), cause: " + t.getMessage(), t);
        }
    } catch (Throwable t) {
        close();
        throw new RemotingException(url.toInetSocketAddress(), null,
                "Failed to start " + getClass().getSimpleName() + " " + NetUtils.getLocalAddress()
                        + " connect to the server " + getRemoteAddress() + ", cause: " + t.getMessage(), t);
    }

    // 从缓存中获得线程池
    executor = (ExecutorService) ExtensionLoader.getExtensionLoader(DataStore.class)
            .getDefaultExtension().get(Constants.CONSUMER_SIDE, Integer.toString(url.getPort()));
    // 清楚线程池缓存
    ExtensionLoader.getExtensionLoader(DataStore.class)
            .getDefaultExtension().remove(Constants.CONSUMER_SIDE, Integer.toString(url.getPort()));
}

该构造函数中做了一些属性值的设置,并且做了打开客户端和连接服务器的操作。

3.wrapChannelHandler

protected static ChannelHandler wrapChannelHandler(URL url, ChannelHandler handler) {
    // 加入线程名称
    url = ExecutorUtil.setThreadName(url, CLIENT_THREAD_POOL_NAME);
    // 设置使用的线程池类型
    url = url.addParameterIfAbsent(Constants.THREADPOOL_KEY, Constants.DEFAULT_CLIENT_THREADPOOL);
    // 包装
    return ChannelHandlers.wrap(handler, url);
}

该方法是包装通道处理器,设置使用的线程池类型是可缓存线程池。

4.initConnectStatusCheckCommand

private synchronized void initConnectStatusCheckCommand() {
    //reconnect=false to close reconnect
    int reconnect = getReconnectParam(getUrl());
    // 有连接频率的值,并且当前没有连接任务
    if (reconnect > 0 && (reconnectExecutorFuture == null || reconnectExecutorFuture.isCancelled())) {
        Runnable connectStatusCheckCommand = new Runnable() {
            @Override
            public void run() {
                try {
                    if (!isConnected()) {
                        // 重连
                        connect();
                    } else {
                        // 记录最后一次重连的时间
                        lastConnectedTime = System.currentTimeMillis();
                    }
                } catch (Throwable t) {
                    String errorMsg = "client reconnect to " + getUrl().getAddress() + " find error . url: " + getUrl();
                    // wait registry sync provider list
                    if (System.currentTimeMillis() - lastConnectedTime > shutdown_timeout) {
                        // 如果之前没有打印过重连的误日志
                        if (!reconnect_error_log_flag.get()) {
                            reconnect_error_log_flag.set(true);
                            // 打印日志
                            logger.error(errorMsg, t);
                            return;
                        }
                    }
                    // 如果到达一次重连日志告警周期,则打印告警日志
                    if (reconnect_count.getAndIncrement() % reconnect_warning_period == 0) {
                        logger.warn(errorMsg, t);
                    }
                }
            }
        };
        // 开启重连定时任务
        reconnectExecutorFuture = reconnectExecutorService.scheduleWithFixedDelay(connectStatusCheckCommand, reconnect, reconnect, TimeUnit.MILLISECONDS);
    }
}

该方法是初始化重连线程,其中做了重连失败后的告警日志和错误日志打印策略。

5.reconnect

@Override
public void reconnect() throws RemotingException {
    disconnect();
    connect();
}

单独放该方法是因为这是该类关注的重点。实现了客户端的重连逻辑。

6.其他

connect、disconnect、close等方法都是调用了对应的抽象方法,而具体的逻辑需要看具体的子类如何去实现相关的抽象方法,这几个方法逻辑比较简单,我不在这里贴出源码,有兴趣可以看我的GitHub,地址文章末尾会给出。

(四)AbstractChannel

该类是通道的抽象类,该类里面做的逻辑很简单,具体的发送消息逻辑在它 的子类中实现。

@Override
public void send(Object message, boolean sent) throws RemotingException {
    // 检测通道是否关闭
    if (isClosed()) {
        throw new RemotingException(this, "Failed to send message "
                + (message == null ? "" : message.getClass().getName()) + ":" + message
                + ", cause: Channel closed. channel: " + getLocalAddress() + " -> " + getRemoteAddress());
    }
}

可以看到send方法,其中只做了检测通道是否关闭的状态检测,没有实现具体的发送消息的逻辑。

(五)ChannelHandlerDelegate

该类继承了ChannelHandler,从它的名字可以看出是ChannelHandler的代表,它就是作为装饰模式中的Component角色,后面讲到的AbstractChannelHandlerDelegate作为装饰模式中的Decorator角色。

public interface ChannelHandlerDelegate extends ChannelHandler {
    /**
     * 获得通道
     * @return
     */
    ChannelHandler getHandler();
}

(六)AbstractChannelHandlerDelegate

属性:

protected ChannelHandler handler

该类实现了ChannelHandlerDelegate接口,并且有一个属性是ChannelHandler,上述已经说到这是装饰模式中的装饰角色,其中的所有实现方法都直接调用被装饰的handler属性的方法。

(七)DecodeHandler

该类为解码处理器,继承了AbstractChannelHandlerDelegate,对接收到的消息进行解码,在父类处理接收消息的功能上叠加了解码功能。

我们来看看received方法:

@Override
public void received(Channel channel, Object message) throws RemotingException {
    // 如果是Decodeable类型的消息,则对整个消息解码
    if (message instanceof Decodeable) {
        decode(message);
    }

    // 如果是Request请求类型消息,则对请求中对请求数据解码
    if (message instanceof Request) {
        decode(((Request) message).getData());
    }

    // 如果是Response返回类型的消息,则对返回消息中对结果进行解码
    if (message instanceof Response) {
        decode(((Response) message).getResult());
    }

    // 继续将消息委托给handler,继续处理
    handler.received(channel, message);
}

可以看到做了三次判断,根据消息的不同会对消息的不同数据做解码。可以看到,这里用到装饰模式后,在处理消息的前面做了解码的处理,并且还能继续委托给handler来处理消息,通过组合做到了功能的叠加。

private void decode(Object message) {
    // 如果消息类型是Decodeable,进一步调用Decodeable的decode来解码
    if (message != null && message instanceof Decodeable) {
        try {
            ((Decodeable) message).decode();
            if (log.isDebugEnabled()) {
                log.debug("Decode decodeable message " + message.getClass().getName());
            }
        } catch (Throwable e) {
            if (log.isWarnEnabled()) {
                log.warn("Call Decodeable.decode failed: " + e.getMessage(), e);
            }
        } // ~ end of catch
    } // ~ end of if
} // ~ end of method decode

可以看到这是解析消息的逻辑,当消息是Decodeable类型,还会继续调用Decodeable的decode方法来进行解析。它的实现类后续会讲解到。

(八)MultiMessageHandler

该类是多消息处理器的抽象类。同样继承了AbstractChannelHandlerDelegate类,我们来看看它的received方法:

@SuppressWarnings("unchecked")
@Override
public void received(Channel channel, Object message) throws RemotingException {
    // 当消息为多消息时 循环交给handler处理接收到当消息
    if (message instanceof MultiMessage) {
        MultiMessage list = (MultiMessage) message;
        for (Object obj : list) {
            handler.received(channel, obj);
        }
    } else {
        // 如果是单消息,就直接交给handler处理器
        handler.received(channel, message);
    }
}

逻辑很简单,当消息是多消息类型时,也就是一次性接收到多条消息的情况,循环去处理消息,当消息是单消息时候,直接交给handler去处理。

(九)WrappedChannelHandler

该类跟AbstractChannelHandlerDelegate的作用类似,都是装饰模式中的装饰角色,其中的所有实现方法都直接调用被装饰的handler属性的方法,该类是为了添加线程池的功能,它的子类都是去关心哪些消息是需要分发到线程池的,哪些消息直接由I / O线程执行,现在版本有四种场景,也就是它的四个子类,下面我一一描述。

public WrappedChannelHandler(ChannelHandler handler, URL url) {
    this.handler = handler;
    this.url = url;
    // 创建线程池
    executor = (ExecutorService) ExtensionLoader.getExtensionLoader(ThreadPool.class).getAdaptiveExtension().getExecutor(url);

    // 设置组件的key
    String componentKey = Constants.EXECUTOR_SERVICE_COMPONENT_KEY;
    if (Constants.CONSUMER_SIDE.equalsIgnoreCase(url.getParameter(Constants.SIDE_KEY))) {
        componentKey = Constants.CONSUMER_SIDE;
    }
    // 获得dataStore实例
    DataStore dataStore = ExtensionLoader.getExtensionLoader(DataStore.class).getDefaultExtension();
    // 把线程池放到dataStore中缓存
    dataStore.put(componentKey, Integer.toString(url.getPort()), executor);
}

可以看到构造方法除了属性的填充以外,线程池是基于dubbo 的SPI Adaptive机制创建的,在dataStore中把线程池加进去, 该线程池就是AbstractClient 或 AbstractServer 从 DataStore 获得的线程池。

public ExecutorService getExecutorService() {
    // 首先返回的不是共享线程池,是该类的线程池
    ExecutorService cexecutor = executor;
    // 如果该类的线程池关闭或者为空,则返回的是共享线程池
    if (cexecutor == null || cexecutor.isShutdown()) {
        cexecutor = SHARED_EXECUTOR;
    }
    return cexecutor;
}

该方法是获得线程池的实例,不过该类里面有两个线程池,还加入了一个共享线程池,共享线程池优先级较低。

(十)ExecutionChannelHandler

该类继承了WrappedChannelHandler,也是增强了功能,处理的是接收请求消息时,把请求消息分发到线程池,而除了请求消息以外,其他消息类型都直接通过I / O线程直接执行。

@Override
public void received(Channel channel, Object message) throws RemotingException {
    // 获得线程池实例
    ExecutorService cexecutor = getExecutorService();
    // 如果消息是request类型,才会分发到线程池,其他消息,如响应,连接,断开连接,心跳将由I / O线程直接执行。
    if (message instanceof Request) {
        try {
            // 把请求消息分发到线程池
            cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.RECEIVED, message));
        } catch (Throwable t) {
            // FIXME: when the thread pool is full, SERVER_THREADPOOL_EXHAUSTED_ERROR cannot return properly,
            // therefore the consumer side has to wait until gets timeout. This is a temporary solution to prevent
            // this scenario from happening, but a better solution should be considered later.
            // 当线程池满了,SERVER_THREADPOOL_EXHAUSTED_ERROR错误无法正常返回
            // 因此消费者方必须等到超时。这是一种预防的临时解决方案,所以这里直接返回该错误
            if (t instanceof RejectedExecutionException) {
                Request request = (Request) message;
                if (request.isTwoWay()) {
                    String msg = "Server side(" + url.getIp() + "," + url.getPort()
                            + ") thread pool is exhausted, detail msg:" + t.getMessage();
                    Response response = new Response(request.getId(), request.getVersion());
                    response.setStatus(Response.SERVER_THREADPOOL_EXHAUSTED_ERROR);
                    response.setErrorMessage(msg);
                    channel.send(response);
                    return;
                }
            }
            throw new ExecutionException(message, channel, getClass() + " error when process received event.", t);
        }
    } else {
        // 如果消息不是request类型,则直接处理
        handler.received(channel, message);
    }
}

上述就可以都看到对于请求消息的处理,其中有个打补丁的方式是当线程池满了的时候,消费者只能等待请求超时,所以这里直接返回线程池满的错误。

(十一)AllChannelHandler

该类也继承了WrappedChannelHandler,也是为了增强功能,处理的是连接、断开连接、捕获异常以及接收到的所有消息都分发到线程池。

@Override
public void connected(Channel channel) throws RemotingException {
    ExecutorService cexecutor = getExecutorService();
    try {
        // 把连接操作分发到线程池处理
        cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.CONNECTED));
    } catch (Throwable t) {
        throw new ExecutionException("connect event", channel, getClass() + " error when process connected event .", t);
    }
}

@Override
public void disconnected(Channel channel) throws RemotingException {
    ExecutorService cexecutor = getExecutorService();
    try {
        // 把断开连接操作分发到线程池处理
        cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.DISCONNECTED));
    } catch (Throwable t) {
        throw new ExecutionException("disconnect event", channel, getClass() + " error when process disconnected event .", t);
    }
}

@Override
public void received(Channel channel, Object message) throws RemotingException {
    ExecutorService cexecutor = getExecutorService();
    try {
        // 把所有消息分发到线程池处理
        cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.RECEIVED, message));
    } catch (Throwable t) {
        //TODO A temporary solution to the problem that the exception information can not be sent to the opposite end after the thread pool is full. Need a refactoring
        //fix The thread pool is full, refuses to call, does not return, and causes the consumer to wait for time out
        // 这里处理线程池满的问题,只有在请求时候会出现。
        //复线程池已满,拒绝调用,不返回,并导致使用者等待超时
       if(message instanceof Request && t instanceof RejectedExecutionException){
          Request request = (Request)message;
          if(request.isTwoWay()){
             String msg = "Server side(" + url.getIp() + "," + url.getPort() + ") threadpool is exhausted ,detail msg:" + t.getMessage();
             Response response = new Response(request.getId(), request.getVersion());
             response.setStatus(Response.SERVER_THREADPOOL_EXHAUSTED_ERROR);
             response.setErrorMessage(msg);
             channel.send(response);
             return;
          }
       }
        throw new ExecutionException(message, channel, getClass() + " error when process received event .", t);
    }
}

@Override
public void caught(Channel channel, Throwable exception) throws RemotingException {
    ExecutorService cexecutor = getExecutorService();
    try {
        // 把捕获异常作分发到线程池处理
        cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.CAUGHT, exception));
    } catch (Throwable t) {
        throw new ExecutionException("caught event", channel, getClass() + " error when process caught event .", t);
    }
}

可以看到,所有操作以及消息都分到到线程池中。并且注意操作不同,传入的状态也不同。

(十二)ConnectionOrderedChannelHandler

该类也是继承了WrappedChannelHandler,增强功能,该类是把连接、取消连接以及接收到的消息都分发到线程池,但是不同的是,该类自己创建了一个跟连接相关的线程池,把连接操作和断开连接操分发到该线程池,而接收到的消息则分发到WrappedChannelHandler的线程池中。来看看具体的实现。

/**
 * 连接线程池
 */
protected final ThreadPoolExecutor connectionExecutor;
/**
 * 连接队列大小限制
 */
private final int queuewarninglimit;

public ConnectionOrderedChannelHandler(ChannelHandler handler, URL url) {
    super(handler, url);
    // 获得线程名,默认是Dubbo
    String threadName = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME);
    // 创建连接线程池
    connectionExecutor = new ThreadPoolExecutor(1, 1,
            0L, TimeUnit.MILLISECONDS,
            new LinkedBlockingQueue<Runnable>(url.getPositiveParameter(Constants.CONNECT_QUEUE_CAPACITY, Integer.MAX_VALUE)),
            new NamedThreadFactory(threadName, true),
            new AbortPolicyWithReport(threadName, url)
    );  // FIXME There's no place to release connectionExecutor!
    // 设置工作队列限制,默认是1000
    queuewarninglimit = url.getParameter(Constants.CONNECT_QUEUE_WARNING_SIZE, Constants.DEFAULT_CONNECT_QUEUE_WARNING_SIZE);
}

可以属性中有一个连接线程池,看到在构造函数里创建了该线程池,而queuewarninglimit是用来限制连接线程池的工作队列长度,比较简单。来看看连接和断开连接到逻辑。

@Override
public void connected(Channel channel) throws RemotingException {
    try {
        // 核对工作队列长度
        checkQueueLength();
        // 分发连接操作
        connectionExecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.CONNECTED));
    } catch (Throwable t) {
        throw new ExecutionException("connect event", channel, getClass() + " error when process connected event .", t);
    }
}

@Override
public void disconnected(Channel channel) throws RemotingException {
    try {
        // 核对工作队列长度
        checkQueueLength();
        // 分发断开连接操作
        connectionExecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.DISCONNECTED));
    } catch (Throwable t) {
        throw new ExecutionException("disconnected event", channel, getClass() + " error when process disconnected event .", t);
    }
}

可以看到,这两个操作都是分发到连接线程池connectionExecutor中,和AllChannelHandle类r中的分发的线程池不是同一个。而ConnectionOrderedChannelHandler的received方法跟AllChannelHandle一样,我就不贴出来。

(十三)MessageOnlyChannelHandler

该类也是继承了WrappedChannelHandler,是WrappedChannelHandler的最后一个子类,也是增强功能,不过该类只是处理了所有的消息分发到线程池。可以看到源码,比较简单:

@Override
public void received(Channel channel, Object message) throws RemotingException {
    // 获得线程池实例
    ExecutorService cexecutor = getExecutorService();
    try {
        // 把消息分发到线程池
        cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.RECEIVED, message));
    } catch (Throwable t) {
        throw new ExecutionException(message, channel, getClass() + " error when process received event .", t);
    }
}

下面我讲讲解五种线程池的调度策略,也就是我在《dubbo源码解析(八)远程通信——开篇》中提到的Dispatcher接口的五种实现,分别是AllDispatcher、DirectDispatcher、MessageOnlyDispatcher、ExecutionDispatcher、ConnectionOrderedDispatcher。

(十四)AllDispatcher

public class AllDispatcher implements Dispatcher {

    public static final String NAME = "all";

    @Override
    public ChannelHandler dispatch(ChannelHandler handler, URL url) {
        // 线程池调度方法:任何消息以及操作都分发到线程池中
        return new AllChannelHandler(handler, url);
    }

}

对照着上述讲到的AllChannelHandler,是不是很清晰这种线程池的调度方法。并且该调度方法是默认的调度方法。

(十五)ConnectionOrderedDispatcher

public class ConnectionOrderedDispatcher implements Dispatcher {

    public static final String NAME = "connection";

    @Override
    public ChannelHandler dispatch(ChannelHandler handler, URL url) {
        // 线程池调度方法:连接、断开连接分发到到线程池和其他消息分发到线程池不是同一个
        return new ConnectionOrderedChannelHandler(handler, url);
    }

}

对照上述讲到的ConnectionOrderedChannelHandler,也很清晰该线程池调度方法。

(十六)DirectDispatcher

public class DirectDispatcher implements Dispatcher {

    public static final String NAME = "direct";

    @Override
    public ChannelHandler dispatch(ChannelHandler handler, URL url) {
        // 直接处理消息,不分发到线程池
        return handler;
    }

}

该线程池调度方法是不调度线程池,直接执行。

(十七)ExecutionDispatcher

public class ExecutionDispatcher implements Dispatcher {

    public static final String NAME = "execution";

    @Override
    public ChannelHandler dispatch(ChannelHandler handler, URL url) {
        // 线程池调度方法:只有请求消息分发到线程池,其他都直接执行
        return new ExecutionChannelHandler(handler, url);
    }

}

对照着上述的ExecutionChannelHandler讲解,也可以很清晰的看出该线程池调度策略。

(十八)MessageOnlyDispatcher

public class MessageOnlyDispatcher implements Dispatcher {

    public static final String NAME = "message";

    @Override
    public ChannelHandler dispatch(ChannelHandler handler, URL url) {
        // 只要是接收到的消息,都分发到线程池
        return new MessageOnlyChannelHandler(handler, url);
    }

}

对照着上述讲到的MessageOnlyChannelHandler,可以很清晰该线程池调度策略。

(十九)ChannelHandlers

该类是通道处理器工厂,会对传入的handler进行一次包装,无论是Client还是Server都会做这样的处理,也就是做了一些功能上的增强,就像上述我说到的装饰模式中的那些功能。

我们来看看源码:

public static ChannelHandler wrap(ChannelHandler handler, URL url) {
    return ChannelHandlers.getInstance().wrapInternal(handler, url);
}

protected ChannelHandler wrapInternal(ChannelHandler handler, URL url) {
    // 调用了多消息处理器,对心跳消息进行了功能加强
    return new MultiMessageHandler(new HeartbeatHandler(ExtensionLoader.getExtensionLoader(Dispatcher.class)
            .getAdaptiveExtension().dispatch(handler, url)));
}

最关键的是这两个方法,看第二个方法,其实就是包装了MultiMessageHandler功能,增加了多消息处理的功能,以及对心跳消息做了功能增强。

(二十)AbstractCodec

实现 Codec2 接口,,其中实现了一些编解码的公共逻辑。

1.checkPayload

protected static void checkPayload(Channel channel, long size) throws IOException {
    // 默认长度
    int payload = Constants.DEFAULT_PAYLOAD;
    if (channel != null && channel.getUrl() != null) {
        // 优先从url中获得消息长度配置,如果没有则用默认长度
        payload = channel.getUrl().getParameter(Constants.PAYLOAD_KEY, Constants.DEFAULT_PAYLOAD);
    }
    // 如果消息长度过长,则报错
    if (payload > 0 && size > payload) {
        ExceedPayloadLimitException e = new ExceedPayloadLimitException("Data length too large: " + size + ", max payload: " + payload + ", channel: " + channel);
        logger.error(e);
        throw e;
    }
}

该方法是检验消息长度。

2.getSerialization

protected Serialization getSerialization(Channel channel) {
    return CodecSupport.getSerialization(channel.getUrl());
}

该方法是获得序列化对象。

3.isClientSide

protected boolean isClientSide(Channel channel) {
    // 获得是side对应的value
    String side = (String) channel.getAttribute(Constants.SIDE_KEY);
    if ("client".equals(side)) {
        return true;
    } else if ("server".equals(side)) {
        return false;
    } else {
        InetSocketAddress address = channel.getRemoteAddress();
        URL url = channel.getUrl();
        // 判断url的主机地址是否和远程地址一样,如果是,则判断为client,如果不是,则判断为server
        boolean client = url.getPort() == address.getPort()
                && NetUtils.filterLocalHost(url.getIp()).equals(
                NetUtils.filterLocalHost(address.getAddress()
                        .getHostAddress()));
        // 把value设置进去
        channel.setAttribute(Constants.SIDE_KEY, client ? "client"
                : "server");
        return client;
    }
}

该方法是判断是否为客户端侧的通道。

4.isServerSide

protected boolean isServerSide(Channel channel) {
    return !isClientSide(channel);
}

该方法是判断是否为服务端侧的通道。

(二十一)TransportCodec

该类是传输编解码器,使用 Serialization 进行序列化/反序列化,直接编解码。关于序列化为会在后续文章中介绍。

@Override
public void encode(Channel channel, ChannelBuffer buffer, Object message) throws IOException {
    // 获得序列化的 ObjectOutput 对象
    OutputStream output = new ChannelBufferOutputStream(buffer);
    ObjectOutput objectOutput = getSerialization(channel).serialize(channel.getUrl(), output);
    // 写入 ObjectOutput
    encodeData(channel, objectOutput, message);
    objectOutput.flushBuffer();
    // 释放
    if (objectOutput instanceof Cleanable) {
        ((Cleanable) objectOutput).cleanup();
    }
}

@Override
public Object decode(Channel channel, ChannelBuffer buffer) throws IOException {
    // 获得反序列化的 ObjectInput 对象
    InputStream input = new ChannelBufferInputStream(buffer);
    ObjectInput objectInput = getSerialization(channel).deserialize(channel.getUrl(), input);
    // 读取 ObjectInput
    Object object = decodeData(channel, objectInput);
    // 释放
    if (objectInput instanceof Cleanable) {
        ((Cleanable) objectInput).cleanup();
    }
    return object;
}

该类关键方法就是编码和解码,比较好理解,直接进行了序列化和反序列化。

(二十二)CodecAdapter

该类是Codec 的适配器,用到了适配器模式,把Codec适配成Codec2。将Codec的编码和解码方法都适配成Codec2。比如很多时候都只能用Codec2的编解码器,但是有的时候需要用Codec,但是不能满足导致只能加入适配器来完成使用。

@Override
public void encode(Channel channel, ChannelBuffer buffer, Object message)
        throws IOException {
    UnsafeByteArrayOutputStream os = new UnsafeByteArrayOutputStream(1024);
    // 调用旧的编解码器的编码
    codec.encode(channel, os, message);
    buffer.writeBytes(os.toByteArray());
}

@Override
public Object decode(Channel channel, ChannelBuffer buffer) throws IOException {
    byte[] bytes = new byte[buffer.readableBytes()];
    int savedReaderIndex = buffer.readerIndex();
    buffer.readBytes(bytes);
    UnsafeByteArrayInputStream is = new UnsafeByteArrayInputStream(bytes);
    // 调用旧的编解码器的解码
    Object result = codec.decode(channel, is);
    buffer.readerIndex(savedReaderIndex + is.position());
    return result == Codec.NEED_MORE_INPUT ? DecodeResult.NEED_MORE_INPUT : result;
}

可以看到,在编码和解码的方法中都调用了codec的方法。

(二十三)ChannelDelegate、ServerDelegate、ClientDelegate

ChannelDelegate实现类Channel,ServerDelegate实现了Server,ClientDelegate实现了Client,都用到了装饰模式,都作为装饰模式中的装饰角色,所以类中的所有实现方法都调用了属性的方法。具体代码就不贴了,朋友们可以自行查看。

(二十四)ChannelHandlerAdapter

该类实现了ChannelHandler接口,是通道处理器适配类,该类中所有实现方法都是空的,所有想实现ChannelHandler接口的类可以直接继承该类,选择需要实现的方法进行实现,不需要实现ChannelHandler接口中所有方法。

(二十五)ChannelHandlerDispatcher

该类是通道处理器调度器,其中缓存了所有通道处理器,有一个通道处理器集合。并且每个操作都会去遍历该集合,执行相应的操作,例如:

@Override
public void connected(Channel channel) {
    // 遍历通道处理器集合
    for (ChannelHandler listener : channelHandlers) {
        try {
            // 连接
            listener.connected(channel);
        } catch (Throwable t) {
            logger.error(t.getMessage(), t);
        }
    }
}

(二十六)CodecSupport

该类是编解码工具类,提供查询 Serialization 的功能。

/**
 * 序列化对象集合 key为序列化类型编号
 */
private static Map<Byte, Serialization> ID_SERIALIZATION_MAP = new HashMap<Byte, Serialization>();
/**
 * 序列化扩展名集合 key为序列化类型编号 value为序列化扩展名
 */
private static Map<Byte, String> ID_SERIALIZATIONNAME_MAP = new HashMap<Byte, String>();

static {
    // 利用dubbo 的SPI机制获得序列化扩展名
    Set<String> supportedExtensions = ExtensionLoader.getExtensionLoader(Serialization.class).getSupportedExtensions();
    for (String name : supportedExtensions) {
        // 获得相应扩展名的序列化实现
        Serialization serialization = ExtensionLoader.getExtensionLoader(Serialization.class).getExtension(name);
        byte idByte = serialization.getContentTypeId();
        if (ID_SERIALIZATION_MAP.containsKey(idByte)) {
            logger.error("Serialization extension " + serialization.getClass().getName()
                    + " has duplicate id to Serialization extension "
                    + ID_SERIALIZATION_MAP.get(idByte).getClass().getName()
                    + ", ignore this Serialization extension");
            continue;
        }
        // 缓存序列化实现
        ID_SERIALIZATION_MAP.put(idByte, serialization);
        // 缓存序列化编号和扩展名
        ID_SERIALIZATIONNAME_MAP.put(idByte, name);
    }
}

可以看到该类中缓存了所有的序列化对象和序列化扩展名。可以从中拿到Serialization。

(二十七)ExceedPayloadLimitException

该类是消息长度限制异常。

public class ExceedPayloadLimitException extends IOException {
    private static final long serialVersionUID = -1112322085391551410L;

    public ExceedPayloadLimitException(String message) {
        super(message);
    }
}

后记

该部分相关的源码解析地址:github.com/CrazyHZM/in…

该文章讲解了Transport层的相关设计和逻辑、介绍dubbo-remoting-api中的transport包内的源码解,其中关键的是整个设计都在使用装饰模式,传输层中关键的编解码器以及客户端、服务的、通道的抽象,还有关键的就是线程池的调度方法,熟悉那五种调度方法,对消息的处理。整个传输层核心的消息,很多操作围绕着消息展开。下一篇我会讲解交换层exchange部分。如果我在哪一部分写的不够到位或者写错了,欢迎给我提意见。