Spring注解@Autowired源码分析

6,043 阅读15分钟

AutowiredAnnotationBeanPostProcessor是Spring的后置处理器,专门处理@Autowired和@Value注解。

一、触发方式

  • Spring容器在每个Bean实例化之后,调用AutowiredAnnotationBeanPostProcessor的postProcessMergedBeanDefinition方法,查找该Bean是否有@Autowired注解。
  • Spring在每个Bean实例化的时候,调用populateBean进行属性注入的时候,即调用postProcessPropertyValues方法,查找该Bean是否有@Autowired注解。

二、构造函数

public AutowiredAnnotationBeanPostProcessor() {
	//后置处理器将处理@Autowire注解
	this.autowiredAnnotationTypes.add(Autowired.class);
	//后置处理器将处理@Value注解
	this.autowiredAnnotationTypes.add(Value.class);
	try {
		//后置处理器将处理javax.inject.Inject JSR-330注解
		this.autowiredAnnotationTypes.add((Class<? extends Annotation>)
				ClassUtils.forName("javax.inject.Inject", AutowiredAnnotationBeanPostProcessor.class.getClassLoader()));
		logger.info("JSR-330 'javax.inject.Inject' annotation found and supported for autowiring");
	}
	catch (ClassNotFoundException ex) {
		// JSR-330 API not available - simply skip.
	}
	}

三、注入的方法

        //处理类中的属性,属性注入
	@Override
	public PropertyValues postProcessPropertyValues(
		PropertyValues pvs, PropertyDescriptor[] pds, Object bean, String beanName) throws BeanCreationException {

	//获取指定类中autowire相关注解的元信息
<1>	InjectionMetadata metadata = findAutowiringMetadata(beanName, bean.getClass(), pvs);
	try {
		//对Bean的属性进行自动注入
<2>		metadata.inject(bean, beanName, pvs);
	}
	catch (BeanCreationException ex) {
		throw ex;
	}
	catch (Throwable ex) {
		throw new BeanCreationException(beanName, "Injection of autowired dependencies failed", ex);
	}
	return pvs;
	}

该方法就是在属性注入populateBean中调用的pvs = ibp.postProcessPropertyValues(pvs, filteredPds, bw.getWrappedInstance(), beanName);的具体实现之一。

<1> 处的代码是从该bean中获取对应的注解信息,在AutowiredAnnotationBeanPostProcessor这里就是寻找有加@Value、@Autowired注解的字段,然后把相关信息封装在InjectionMetadata。代码如下:

//获取给定类的autowire相关注解元信息
	private InjectionMetadata findAutowiringMetadata(String beanName, Class<?> clazz, @Nullable PropertyValues pvs) {
	// Fall back to class name as cache key, for backwards compatibility with custom callers.
	String cacheKey = (StringUtils.hasLength(beanName) ? beanName : clazz.getName());
	// Quick check on the concurrent map first, with minimal locking.
	//首先从容器中查找是否有给定类的autowire相关注解元信息
	InjectionMetadata metadata = this.injectionMetadataCache.get(cacheKey);
	if (InjectionMetadata.needsRefresh(metadata, clazz)) {
		synchronized (this.injectionMetadataCache) {
			metadata = this.injectionMetadataCache.get(cacheKey);
			if (InjectionMetadata.needsRefresh(metadata, clazz)) {
				if (metadata != null) {
					//解析给定类autowire相关注解元信息
					metadata.clear(pvs);
				}
				//解析给定类autowire相关注解元信息
				metadata = buildAutowiringMetadata(clazz);
				//将得到的给定类autowire相关注解元信息存储在容器缓存中
				this.injectionMetadataCache.put(cacheKey, metadata);
			}
		}
	}
	return metadata;
	}

下面来看buildAutowiringMetadata的详细代码:

//解析给定类autowire相关注解元信息
	private InjectionMetadata buildAutowiringMetadata(final Class<?> clazz) {
	//创建一个存放注解元信息的集合
	LinkedList<InjectionMetadata.InjectedElement> elements = new LinkedList<>();
	Class<?> targetClass = clazz;

	//递归遍历当前类及其所有基类,解析全部注解元信息
	do {
		//创建一个存储当前正在处理类注解元信息的集合
		final LinkedList<InjectionMetadata.InjectedElement> currElements = new LinkedList<>();

		//利用JDK反射机制获取给定类中所有的声明字段,获取字段上的注解信息
		ReflectionUtils.doWithLocalFields(targetClass, field -> {
			//获取给定字段上的注解
			AnnotationAttributes ann = findAutowiredAnnotation(field);
			if (ann != null) {
				//如果给定字段是静态的(static),则直接遍历下一个字段
				if (Modifier.isStatic(field.getModifiers())) {
					if (logger.isWarnEnabled()) {
						logger.warn("Autowired annotation is not supported on static fields: " + field);
					}
					return;
				}
				//判断注解的required属性值是否有效
				boolean required = determineRequiredStatus(ann);
				//将当前字段元信息封装,添加在返回的集合中
				currElements.add(new AutowiredFieldElement(field, required));
			}
		});

		//利用JDK反射机制获取给定类中所有的声明方法,获取方法上的注解信息
		ReflectionUtils.doWithLocalMethods(targetClass, method -> {
			Method bridgedMethod = BridgeMethodResolver.findBridgedMethod(method);
			if (!BridgeMethodResolver.isVisibilityBridgeMethodPair(method, bridgedMethod)) {
				return;
			}
			//获取给定方法上的所有注解
			AnnotationAttributes ann = findAutowiredAnnotation(bridgedMethod);
			if (ann != null && method.equals(ClassUtils.getMostSpecificMethod(method, clazz))) {
				//如果方法是静态的,则直接遍历下一个方法
				if (Modifier.isStatic(method.getModifiers())) {
					if (logger.isWarnEnabled()) {
						logger.warn("Autowired annotation is not supported on static methods: " + method);
					}
					return;
				}
				//如果方法的参数列表为空
				if (method.getParameterCount() == 0) {
					if (logger.isWarnEnabled()) {
						logger.warn("Autowired annotation should only be used on methods with parameters: " +
								method);
					}
				}
				//判断注解的required属性值是否有效
				boolean required = determineRequiredStatus(ann);
				//获取当前方法的属性描述符,即方法是可读的(readable)getter方法,还是可写的(writeable)setter方法
				PropertyDescriptor pd = BeanUtils.findPropertyForMethod(bridgedMethod, clazz);
				//将方法元信息封装添加到返回的元信息集合中
				currElements.add(new AutowiredMethodElement(method, required, pd));
			}
		});

		//将当前类的注解元信息存放到注解元信息集合中
		elements.addAll(0, currElements);
		//获取给定类的父类
		targetClass = targetClass.getSuperclass();
	}
	//如果给定类有基类,并且基类不是Object,则递归获取其基类的元信息
	while (targetClass != null && targetClass != Object.class);

	return new InjectionMetadata(clazz, elements);
	}

这段代码的注释很清晰了,到这一步就拿到了指定类中autowire相关注解的元信息。
ps:这里可以看到@Autowired注解是不支持static修饰的

我们接着看postProcessPropertyValues方法的<2>处具体的注入逻辑:

//InjectionMetadata.java

public void inject(Object target, @Nullable String beanName, @Nullable PropertyValues pvs) throws Throwable {
	Collection<InjectedElement> checkedElements = this.checkedElements;
	//要注入的字段集合
	Collection<InjectedElement> elementsToIterate =
			(checkedElements != null ? checkedElements : this.injectedElements);
	if (!elementsToIterate.isEmpty()) {
		boolean debug = logger.isDebugEnabled();
		//遍历每个字段 注入
		for (InjectedElement element : elementsToIterate) {
			if (debug) {
				logger.debug("Processing injected element of bean '" + beanName + "': " + element);
			}
			element.inject(target, beanName, pvs);
		}
	}
	}

这里还不是真正注入的方法,我们继续追踪element.inject(target, beanName, pvs);

//InjectionMetadata.java

protected void inject(Object target, @Nullable String requestingBeanName, @Nullable PropertyValues pvs)
		throws Throwable {

	if (this.isField) {
		Field field = (Field) this.member;
		ReflectionUtils.makeAccessible(field);
		field.set(target, getResourceToInject(target, requestingBeanName));
	}
	else {
		if (checkPropertySkipping(pvs)) {
			return;
		}
		try {
			Method method = (Method) this.member;
			ReflectionUtils.makeAccessible(method);
			method.invoke(target, getResourceToInject(target, requestingBeanName));
		}
		catch (InvocationTargetException ex) {
			throw ex.getTargetException();
		}
	}
		}

这是element.inject()的原始方法,它还有两个子类自己实现的方法,如图:

从方法名称可以看出,一个是对字段进行注入,一个是对方法进行注入。并且这两个方法都是AutowiredAnnotationBeanPostProcessor具体的实现。

3.1、字段注入

我们先来看下对字段的注入:

//AutowiredAnnotationBeanPostProcessor.java

	@Override
	protected void inject(Object bean, @Nullable String beanName, @Nullable PropertyValues pvs) throws Throwable {
		//获取要注入的字段
		Field field = (Field) this.member;
		Object value;
		//如果字段的值有缓存
		if (this.cached) {
			//从缓存中获取字段值value
			value = resolvedCachedArgument(beanName, this.cachedFieldValue);
		}
		//没有缓存
		else {
			//创建一个字段依赖描述符
			DependencyDescriptor desc = new DependencyDescriptor(field, this.required);
			desc.setContainingClass(bean.getClass());
			Set<String> autowiredBeanNames = new LinkedHashSet<>(1);
			Assert.state(beanFactory != null, "No BeanFactory available");
			//获取容器中的类型转换器
			TypeConverter typeConverter = beanFactory.getTypeConverter();
			try {
				//核心!获取注入的值
				value = beanFactory.resolveDependency(desc, beanName, autowiredBeanNames, typeConverter);
			}
			catch (BeansException ex) {
				throw new UnsatisfiedDependencyException(null, beanName, new InjectionPoint(field), ex);
			}
			//线程同步,确保容器中数据一致性
			synchronized (this) {
				//如果字段的值没有缓存
				if (!this.cached) {
					//字段值不为null,并且required属性为true
					if (value != null || this.required) {
						this.cachedFieldValue = desc;
						//为指定Bean注册依赖Bean
						registerDependentBeans(beanName, autowiredBeanNames);
						if (autowiredBeanNames.size() == 1) {
							String autowiredBeanName = autowiredBeanNames.iterator().next();
							//如果容器中有指定名称的Bean对象
							if (beanFactory.containsBean(autowiredBeanName)) {
								//依赖对象类型和字段类型匹配,默认按类型注入
								if (beanFactory.isTypeMatch(autowiredBeanName, field.getType())) {
									//创建一个依赖对象的引用,同时缓存
									this.cachedFieldValue = new ShortcutDependencyDescriptor(
											desc, autowiredBeanName, field.getType());
								}
							}
						}
					}
					//如果获取的依赖关系为null,且获取required属性为false
					else {
						//将字段值的缓存设置为null
						this.cachedFieldValue = null;
					}
					//容器已经对当前字段的值缓存
					this.cached = true;
				}
			}
		}
		//如果字段值不为null
		if (value != null) {
			//显式使用JDK的反射机制,设置自动的访问控制权限为允许访问
			ReflectionUtils.makeAccessible(field);
			//为字段赋值
			field.set(bean, value);
		}
	}

这段代码很好理解,从注解@Value/@Autowired中获取要注入的值,之后利用反射set到字段中。
重点就是怎么从注解中获取要注入的值,我们来看核心代码value = beanFactory.resolveDependency(desc, beanName, autowiredBeanNames, typeConverter);

//DefaultListableBeanFactory.java

public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,
	@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {

	descriptor.initParameterNameDiscovery(getParameterNameDiscoverer());
	if (Optional.class == descriptor.getDependencyType()) {
		return createOptionalDependency(descriptor, requestingBeanName);
	}
	else if (ObjectFactory.class == descriptor.getDependencyType() ||
			ObjectProvider.class == descriptor.getDependencyType()) {
		return new DependencyObjectProvider(descriptor, requestingBeanName);
	}
	else if (javaxInjectProviderClass == descriptor.getDependencyType()) {
		return new Jsr330ProviderFactory().createDependencyProvider(descriptor, requestingBeanName);
	}
	else {
		Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary(
				descriptor, requestingBeanName);
		if (result == null) {
			//真正获取值的代码
			result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter);
		}
		return result;
	}
	}

进行跟踪:

//DefaultListableBeanFactory.java

public Object doResolveDependency(DependencyDescriptor descriptor, @Nullable String beanName,
	@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {
        //注入点
	InjectionPoint previousInjectionPoint = ConstructorResolver.setCurrentInjectionPoint(descriptor);
	try {
		// 针对给定的工厂给定一个快捷实现的方式,例如考虑一些预先解析的信息
		// 在进入所有bean的常规类型匹配算法之前,解析算法将首先尝试通过此方法解析快捷方式。
		// 子类可以覆盖此方法
		Object shortcut = descriptor.resolveShortcut(this);
		if (shortcut != null) {
			return shortcut;
		}

		//获取字段属性的类型
		Class<?> type = descriptor.getDependencyType();

		//拿到@Value里的值
		Object value = getAutowireCandidateResolver().getSuggestedValue(descriptor);
		if (value != null) {
			if (value instanceof String) {
				String strVal = resolveEmbeddedValue((String) value);
				BeanDefinition bd = (beanName != null && containsBean(beanName) ? getMergedBeanDefinition(beanName) : null);
				value = evaluateBeanDefinitionString(strVal, bd);
			}
			TypeConverter converter = (typeConverter != null ? typeConverter : getTypeConverter());
			return (descriptor.getField() != null ?
					converter.convertIfNecessary(value, type, descriptor.getField()) :
					converter.convertIfNecessary(value, type, descriptor.getMethodParameter()));
		}

		//如果标识@Autowired注解的属性是复合类型,如Array,Collection,Map,
		// 从这个方法获取@Autowired里的值
<1>		Object multipleBeans = resolveMultipleBeans(descriptor, beanName, autowiredBeanNames, typeConverter);
		if (multipleBeans != null) {
			return multipleBeans;
		}

		//如果标识@Autowired注解的属性是非复合类型,
		// 从这个方法获取@Autowired里的值
<2>		Map<String, Object> matchingBeans = findAutowireCandidates(beanName, type, descriptor);
		//如果没有符合该类型的Bean
		if (matchingBeans.isEmpty()) {
			// 没有找到,检验 @autowire  的 require 是否为 true
			if (isRequired(descriptor)) {
				//抛出异常
				raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor);
			}
			return null;
		}

		String autowiredBeanName;
		Object instanceCandidate;

		//如果符合该类型的Bean有多个
		if (matchingBeans.size() > 1) {
			//挑选出最优解
<3>			autowiredBeanName = determineAutowireCandidate(matchingBeans, descriptor);
			if (autowiredBeanName == null) {
				if (isRequired(descriptor) || !indicatesMultipleBeans(type)) {
					//抛出异常
					return descriptor.resolveNotUnique(type, matchingBeans);
				}
				else {
					// In case of an optional Collection/Map, silently ignore a non-unique case:
					// possibly it was meant to be an empty collection of multiple regular beans
					// (before 4.3 in particular when we didn't even look for collection beans).
					return null;
				}
			}
			instanceCandidate = matchingBeans.get(autowiredBeanName);
		}
		else {
			// We have exactly one match.
			Map.Entry<String, Object> entry = matchingBeans.entrySet().iterator().next();
			autowiredBeanName = entry.getKey();
			instanceCandidate = entry.getValue();
		}

		if (autowiredBeanNames != null) {
			autowiredBeanNames.add(autowiredBeanName);
		}
		if (instanceCandidate instanceof Class) {
			instanceCandidate = descriptor.resolveCandidate(autowiredBeanName, type, this);
		}
		Object result = instanceCandidate;
		if (result instanceof NullBean) {
			if (isRequired(descriptor)) {
				raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor);
			}
			result = null;
		}
		if (!ClassUtils.isAssignableValue(type, result)) {
			throw new BeanNotOfRequiredTypeException(autowiredBeanName, type, instanceCandidate.getClass());
		}
		return result;
	}
	finally {
		ConstructorResolver.setCurrentInjectionPoint(previousInjectionPoint);
	}
	}

这段代码看着很长,但其实很容易理解。大致流程就是:
根据字段类型从IOC容器中获取符合的Bean,如果有多个,则挑选出最优的那一个。

下面来看下具体逻辑。

3.1.1、<1>处:@Autowired注入集合数组,如Map.List

先来看下@Autowired注入集合数组的逻辑:

//DefaultListableBeanFactory.java

private Object resolveMultipleBeans(DependencyDescriptor descriptor, @Nullable String beanName,
		@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) {

	Class<?> type = descriptor.getDependencyType();
	//如果@Autowired标识的是数组类型的属性
	if (type.isArray()) {
		//获取数组的内容类型
		Class<?> componentType = type.getComponentType();
		ResolvableType resolvableType = descriptor.getResolvableType();
		Class<?> resolvedArrayType = resolvableType.resolve();
		if (resolvedArrayType != null && resolvedArrayType != type) {
			type = resolvedArrayType;
			componentType = resolvableType.getComponentType().resolve();
		}
		if (componentType == null) {
			return null;
		}
		//通过类型去IOC容器内择取符合的Bean都是使用这个方法
		Map<String, Object> matchingBeans = findAutowireCandidates(beanName, componentType,
				new MultiElementDescriptor(descriptor));
		if (matchingBeans.isEmpty()) {
			return null;
		}
		if (autowiredBeanNames != null) {
			autowiredBeanNames.addAll(matchingBeans.keySet());
		}
		TypeConverter converter = (typeConverter != null ? typeConverter : getTypeConverter());
		//将得到的Bean的候选者们转换为属性类型,如从set转换为Array,List等
		Object result = converter.convertIfNecessary(matchingBeans.values(), type);
		if (getDependencyComparator() != null && result instanceof Object[]) {
			Arrays.sort((Object[]) result, adaptDependencyComparator(matchingBeans));
		}
		return result;
	}
	else if (Collection.class.isAssignableFrom(type) && type.isInterface()) {
		//获取Collection的泛型
		Class<?> elementType = descriptor.getResolvableType().asCollection().resolveGeneric();
		if (elementType == null) {
			return null;
		}
		Map<String, Object> matchingBeans = findAutowireCandidates(beanName, elementType,
				new MultiElementDescriptor(descriptor));
		if (matchingBeans.isEmpty()) {
			return null;
		}
		if (autowiredBeanNames != null) {
			autowiredBeanNames.addAll(matchingBeans.keySet());
		}
		TypeConverter converter = (typeConverter != null ? typeConverter : getTypeConverter());
		Object result = converter.convertIfNecessary(matchingBeans.values(), type);
		if (getDependencyComparator() != null && result instanceof List) {
			Collections.sort((List<?>) result, adaptDependencyComparator(matchingBeans));
		}
		return result;
	}
	else if (Map.class == type) {
		ResolvableType mapType = descriptor.getResolvableType().asMap();
		Class<?> keyType = mapType.resolveGeneric(0);
		if (String.class != keyType) {
			return null;
		}
		Class<?> valueType = mapType.resolveGeneric(1);
		if (valueType == null) {
			return null;
		}
		Map<String, Object> matchingBeans = findAutowireCandidates(beanName, valueType,
				new MultiElementDescriptor(descriptor));
		if (matchingBeans.isEmpty()) {
			return null;
		}
		if (autowiredBeanNames != null) {
			autowiredBeanNames.addAll(matchingBeans.keySet());
		}
		return matchingBeans;
	}
	else {
		return null;
	}
	}

3.1.2、<2>处:@Autowired注入非集合数组,即普通的类如Service

//DefaultListableBeanFactory.java

protected Map<String, Object> findAutowireCandidates(
		@Nullable String beanName, Class<?> requiredType, DependencyDescriptor descriptor) {

	//从IOC容器中获取所有的符合类型的BeanName,存入候选数组
	String[] candidateNames = BeanFactoryUtils.beanNamesForTypeIncludingAncestors(
			this, requiredType, true, descriptor.isEager());
	Map<String, Object> result = new LinkedHashMap<>(candidateNames.length);
	//首先从容器自身注册的依赖解析来匹配,Spring容器自身注册了很多Bean的依赖,
	//当使用者想要注入指定类型的Bean时,会优先从已注册的依赖内寻找匹配
	for (Class<?> autowiringType : this.resolvableDependencies.keySet()) {
		if (autowiringType.isAssignableFrom(requiredType)) {
			Object autowiringValue = this.resolvableDependencies.get(autowiringType);
			autowiringValue = AutowireUtils.resolveAutowiringValue(autowiringValue, requiredType);
			//如果注册的依赖Bean类型是指定类型的实例或是其父类,接口,则将其作为候选者,注册依赖的类型不会重复
			if (requiredType.isInstance(autowiringValue)) {
				result.put(ObjectUtils.identityToString(autowiringValue), autowiringValue);
				break;
			}
		}
	}
	//遍历候选数组
	for (String candidate : candidateNames) {
		//候选Bean不是自引用(即要注入的类不能是类本身,会触发无限递归注入)
		if (!isSelfReference(beanName, candidate) && isAutowireCandidate(candidate, descriptor)) {
			addCandidateEntry(result, candidate, descriptor, requiredType);
		}
	}
	if (result.isEmpty() && !indicatesMultipleBeans(requiredType)) {
		// Consider fallback matches if the first pass failed to find anything...
		DependencyDescriptor fallbackDescriptor = descriptor.forFallbackMatch();
		for (String candidate : candidateNames) {
			if (!isSelfReference(beanName, candidate) && isAutowireCandidate(candidate, fallbackDescriptor)) {
				addCandidateEntry(result, candidate, descriptor, requiredType);
			}
		}
		if (result.isEmpty()) {
			// Consider self references as a final pass...
			// but in the case of a dependency collection, not the very same bean itself.
			for (String candidate : candidateNames) {
				if (isSelfReference(beanName, candidate) &&
						(!(descriptor instanceof MultiElementDescriptor) || !beanName.equals(candidate)) &&
						isAutowireCandidate(candidate, fallbackDescriptor)) {
					addCandidateEntry(result, candidate, descriptor, requiredType);
				}
			}
		}
	}
	return result;
	}

这段代码注释已经写的很清楚了,我们来继续看下addCandidateEntry方法,该方法是把Bean实例放入到候选者集合中

//DefaultListableBeanFactory.java

private void addCandidateEntry(Map<String, Object> candidates, String candidateName,
		DependencyDescriptor descriptor, Class<?> requiredType) {

	//当@Autowired标识的是容器类型的属性,生成的依赖描述类型是MultiElementDescriptor ,
	//因此所有的候选者均是合格的,所以会当场实例化他们。而如果属性的类型非容器,那么可能是多个候选者中挑一个,
	//此时实例化他们所有就不合适了,最终会把合格的那个实例化,如果没有合格的则不实例化,
	//提前实例化对Bean的很多方面有影响,比如AOP,EarlyReference等 */
	if (descriptor instanceof MultiElementDescriptor || containsSingleton(candidateName)) {
		Object beanInstance = descriptor.resolveCandidate(candidateName, requiredType, this);
		candidates.put(candidateName, (beanInstance instanceof NullBean ? null : beanInstance));
	}
	else {
		candidates.put(candidateName, getType(candidateName));
	}
	}

这里会调用doGetBean()方法进行实例化Bean

<3>处:多个候选者中挑选出最优解

如果根据类型从IOC容器中获得的Bean有多个,那么就需要调用determineAutowireCandidate(matchingBeans, descriptor)方法,去挑选出最优解。
代码:

//DefaultListableBeanFactory.java

protected String determineAutowireCandidate(Map<String, Object> candidates, DependencyDescriptor descriptor) {
	Class<?> requiredType = descriptor.getDependencyType();
	//根据@Primary注解来择取最优解
	String primaryCandidate = determinePrimaryCandidate(candidates, requiredType);
	if (primaryCandidate != null) {
		return primaryCandidate;
	}
	//根据@Order,@PriorityOrder,及实现Order接口的序号来择取最优解
	String priorityCandidate = determineHighestPriorityCandidate(candidates, requiredType);
	if (priorityCandidate != null) {
		return priorityCandidate;
	}
	// Fallback
	for (Map.Entry<String, Object> entry : candidates.entrySet()) {
		String candidateName = entry.getKey();
		Object beanInstance = entry.getValue();
		//如果通过以上两步都不能选择出最优解,则使用最基本的策略
		//首先如果这个类型已经由Spring注册过依赖关系对,则直接使用注册的对象,
		//候选者集合是LinkedHashMap,有序Map集合,容器注册的依赖对象位于LinkedHashMap的起始位置
		//如果没有注册过此类型的依赖关系,则根据属性的名称来匹配,、
		//如果属性名称和某个候选者的Bean名称或别名一致,那么直接将此Bean作为最优解
		if ((beanInstance != null && this.resolvableDependencies.containsValue(beanInstance)) ||
				matchesBeanName(candidateName, descriptor.getDependencyName())) {
			return candidateName;
		}
	}
	return null;
	}

这部分逻辑比较简单,总结就是3个步骤:

  • 根据@Primary注解来择取最优解
  • 根据@Order,@PriorityOrder,及实现Order接口的序号来择取最优解
  • 根据Spring默认规则

我们逐一分析这几个步骤,先看第一个:
根据@Primary注解来择取最优解

//DefaultListableBeanFactory.java

protected String determinePrimaryCandidate(Map<String, Object> candidates, Class<?> requiredType) {
	String primaryBeanName = null;
	for (Map.Entry<String, Object> entry : candidates.entrySet()) {
		String candidateBeanName = entry.getKey();
		Object beanInstance = entry.getValue();
		//候选者可以是父容器内的标识了@Primary的Bean,也可以是当前容器的。SpringMVC容器将Spring容器作为父容器
		if (isPrimary(candidateBeanName, beanInstance)) {
			if (primaryBeanName != null) {
				boolean candidateLocal = containsBeanDefinition(candidateBeanName);
				boolean primaryLocal = containsBeanDefinition(primaryBeanName);
				//此处确保同一个容器中同一个类型的多个Bean最多只有一个Bean标识了@Primary
				if (candidateLocal && primaryLocal) {
					throw new NoUniqueBeanDefinitionException(requiredType, candidates.size(),
							"more than one 'primary' bean found among candidates: " + candidates.keySet());
				}
				//如果上一个@Primary的Bean是父容器的,则用当前容器的候选者覆盖之前的@Primary的Bean
				else if (candidateLocal) {
					primaryBeanName = candidateBeanName;
				}
			}
			else {
				primaryBeanName = candidateBeanName;
			}
		}
	}
	return primaryBeanName;
	}

接着看第二个:
根据@Order,@PriorityOrder

//DefaultListableBeanFactory.java

protected String determineHighestPriorityCandidate(Map<String, Object> candidates, Class<?> requiredType) {
	String highestPriorityBeanName = null;
	Integer highestPriority = null;
	for (Map.Entry<String, Object> entry : candidates.entrySet()) {
		String candidateBeanName = entry.getKey();
		Object beanInstance = entry.getValue();
		Integer candidatePriority = getPriority(beanInstance);
		if (candidatePriority != null) {
			//不能同时存在两个最高优先级的序号
			if (highestPriorityBeanName != null) {
				if (candidatePriority.equals(highestPriority)) {
					throw new NoUniqueBeanDefinitionException(requiredType, candidates.size(),
							"Multiple beans found with the same priority ('" + highestPriority +
							"') among candidates: " + candidates.keySet());
				}
				//使用优先级序号最小的Bean作为最优解
				else if (candidatePriority < highestPriority) {
					highestPriorityBeanName = candidateBeanName;
					highestPriority = candidatePriority;
				}
			}
			else {
				highestPriorityBeanName = candidateBeanName;
				highestPriority = candidatePriority;
			}
		}
	}
	return highestPriorityBeanName;
	}

小结
到这里,@Autowired字段注入的源码就分析完毕了。

接下来我们看下方法注入:

3.2、方法注入

//DefaultListableBeanFactory.java

protected void inject(Object bean, @Nullable String beanName, @Nullable PropertyValues pvs) throws Throwable {
	//如果属性被显式设置为skip,则不进行注入
	if (checkPropertySkipping(pvs)) {
		return;
	}
	//获取注入元素对象
	Method method = (Method) this.member;
	Object[] arguments;
	//如果容器对当前方法缓存
	if (this.cached) {
		// Shortcut for avoiding synchronization...
		//获取缓存中指定Bean名称的方法参数
		arguments = resolveCachedArguments(beanName);
	}
	//如果没有缓存
	else {
		//获取方法的参数列表
		Class<?>[] paramTypes = method.getParameterTypes();
		//创建一个存放方法参数的数组
		arguments = new Object[paramTypes.length];
		DependencyDescriptor[] descriptors = new DependencyDescriptor[paramTypes.length];
		Set<String> autowiredBeans = new LinkedHashSet<>(paramTypes.length);
		Assert.state(beanFactory != null, "No BeanFactory available");
		//获取容器的类型转换器
		TypeConverter typeConverter = beanFactory.getTypeConverter();
		for (int i = 0; i < arguments.length; i++) {
			//创建方法参数对象
			MethodParameter methodParam = new MethodParameter(method, i);
			DependencyDescriptor currDesc = new DependencyDescriptor(methodParam, this.required);
			currDesc.setContainingClass(bean.getClass());
			//解析方法的输入参数,为方法参数创建依赖描述符
			descriptors[i] = currDesc;
			try {
				Object arg = beanFactory.resolveDependency(currDesc, beanName, autowiredBeans, typeConverter);
				if (arg == null && !this.required) {
					arguments = null;
					break;
				}
				//根据容器中Bean定义解析依赖关系,获取方法参数依赖对象
				arguments[i] = arg;
			}
			catch (BeansException ex) {
				throw new UnsatisfiedDependencyException(null, beanName, new InjectionPoint(methodParam), ex);
			}
		}
		//线程同步,以确保容器中数据一致性
		synchronized (this) {
			//如果当前方法没有被容器缓存
			if (!this.cached) {
				//如果方法的参数列表不为空
				if (arguments != null) {
					//为容器中缓存方法参数的对象赋值
					Object[] cachedMethodArguments = new Object[paramTypes.length];
					for (int i = 0; i < arguments.length; i++) {
						cachedMethodArguments[i] = descriptors[i];
					}
					//为指定Bean注册依赖Bean
					registerDependentBeans(beanName, autowiredBeans);
					//如果依赖对象集合大小等于方法参数个数
					if (autowiredBeans.size() == paramTypes.length) {
						Iterator<String> it = autowiredBeans.iterator();
						//为方法参数设置依赖对象
						for (int i = 0; i < paramTypes.length; i++) {
							String autowiredBeanName = it.next();
							//如果容器中存在指定名称的Bean对象
							if (beanFactory.containsBean(autowiredBeanName)) {
								//如果参数类型和依赖对象类型匹配
								if (beanFactory.isTypeMatch(autowiredBeanName, paramTypes[i])) {
									//创建一个依赖对象的引用,复制给方法相应的参
									cachedMethodArguments[i] = new ShortcutDependencyDescriptor(
											descriptors[i], autowiredBeanName, paramTypes[i]);
								}
							}
						}
					}
					this.cachedMethodArguments = cachedMethodArguments;
				}
				//如果方法参数列表为null,则设置容器对该方法参数的缓存为null
				else {
					this.cachedMethodArguments = null;
				}
				//设置容器已经对该方法缓存
				this.cached = true;
			}
		}
	}
	//如果方法参数依赖对象不为null
	if (arguments != null) {
		try {
			//使用JDK的反射机制,显式设置方法的访问控制权限为允许访问
			ReflectionUtils.makeAccessible(method);
			//调用Bean的指定方法
			method.invoke(bean, arguments);
		}
		catch (InvocationTargetException ex){
			throw ex.getTargetException();
		}
	}
		}

总结

@Autowired注解的原理用一句话讲明:
就是先从IOC容器中根据类型找到所有符合的Bean,然后再根据@Primary、@Order、@PriorityOrder或Spring默认规则挑选出最符合的Bean,利用反射注入到字段中。