Fragment

1,713 阅读36分钟

Fragment

Fragment是Android的视图生命周期控制器(带生命周期的自定义View),是Activity上的View层级中的一部分,一般可以把它看做一个轻量级的Activity.与传统的Activity相比,它只占用更少的资源,并且提供更大的编码灵活性、在超低版本上的兼容性等.

使用 Fragment 能得到较好的运行效果,并且能将过渡动画兼容到更低的版本(通过FragmentTransition指定)。

单Activity多Fragment模式.使用这种模式有许多好处:

  • 首先第一个好处就是流畅,要知道Activity属于系统组件,受AMS管理并且自身是一个God Object(上帝对象,Activity的功能太过强大以至于耦合了View层和Model层),它的开销是很大的,单Activity模式可以为我们节省很多资源,还可以避免资源不足时,被前台Activity覆盖的Activity被杀掉导致页面数据丢失的情况(因为只有一个Activity,除非JAVA堆内存到达系统要杀掉一个程序的临界点,否则系统最不倾向于杀死前台正在运行的Activity);
  • 其次就是可以将业务逻辑拆分成更小的模块,并将其组合复用,这在这在大型软件系统中尤为重要(新版知乎就使用了单Activity多Fragment这种模式),因为我们都知道Activity的是无法在多个页面中复用的,而此时Fragment就有了它的用武之地,它作为轻量级的Activity,基本可以代理Activity的工作,并且他是可复用
  • 再者,使用Fragment可以为程序带来更大的灵活性,我们都知道在Activity之间传递对象,对象需要序列化,这是因为Activity作为系统组件,是受AMS管理的,而AMS属于系统进程,不在当前程序运行的进程中,启动Activity时需要暂时离开当前进程去到AMS的进程中,而AMS则会将你准备好的数据(也就是Intent之类的)用来启动Activity,这也是Fragment和Activity之间的区别之一,Activity属于系统组件,可以在别的进程运行(组件化/多进程方案),而Fragment只是框架提供给我们的的一个组件,它必须依附于Activity生存,并且只能在当前进程使用,但这同时也意味这它可以获得更大的灵活性,我们可以给Fragment传递对象而无需序列化,甚至可以给Fragment传递View之类的对象,这都是Activity不容易做到的.

Fragment使用

Fragment有两种方式生成,一是硬编码到xml文件中,二是在Java代码中new,然后通过FragmentManager#beginTransaction开启FragmentTransaction提交来添加Fragment.两种方式存在着一定区别.硬编码到xml的Fragment无法被FragmentTransition#remove移除,与Activity同生共死,所以你要是这么用了,就不用试了,移除不了的,但是在代码中new出来的是可以被移除的.

直接硬编码到xml中:

<fragment
    android:id="@+id/map_view"
    android:name="org.kexie.android.dng.navi.widget.AMapCompatFragment"
    android:layout_width="match_parent"
    android:layout_height="match_parent"/>

添加Fragment的第二种方式就是使用FragmentManager#beginTransaction(代码如下)动态添加,你需要先new一个Fragment,然后通过下面Fragment#requireFragmentManager获取FragmentManager来使用beginTransaction添加Fragment,注意add方法的第一个参数,你需要给它指定一个id,也就是Fragment容器的id,通常容器是一个没有子View的FrameLayout,它决定了这个Fragment要在什么位置显示.

//在xml中编写放置Fragment位置的容器
<FrameLayout
    android:id="@+id/fragment_container"
    android:layout_width="match_parent"
    android:layout_height="match_parent"/>
    
//在java代码中动态添加Fragment
requireFragmentManager()
        .beginTransaction()
        .add(R.id.fragment_container, fragment)
        .runOnCommit(()->{/*TODO*/})
        .addToBackStack(null)
        .commit();

在Fragment中,我们可以使用getId()可以返回自身的id,通常用这个方法返回它所在的容器的id,供其他Fragment添加进也添加到当前容器时使用(例如使用Fragment返回栈的场景)。

/**
 * Return the identifier this fragment is known by.  This is either
 * the android:id value supplied in a layout or the container view ID
 * supplied when adding the fragment.
 */
final public int getId() {
    return mFragmentId;
}

需要注意的是FragmentTransaction并不是立即执行的,而是在当前代码执行完毕后,回到事件循环(也就是你们知道的Looper)时,才会执行,不过他会保证在下一帧渲染之前得到执行(通过Handler#createAsync机制),若要在FragmentTransaction执行时搞事情,你需要使用runOnCommit,在上面的代码中我使用了Java8的lambda表达式简写了Runnable.

如果你还想使用Fragment回退栈记得调用addToBackStack,最后别忘了commit,这样才会生效,此时commit函数返回的是BackStackEntry的id

当然FragmentTransaction不止可以执行add操作,同样也可以执行remove,show,hide等操作.

onBackPressed在哪?我知道第一次使用Fragment的人肯定都超想问这个问题.众所周知Fragment本身是没有onBackPressed的.不是Google不设计,而是真的没法管理啊!!!,如果一个界面上有三四个地方都有Fragment存在,一按回退键,谁知道要交给哪个Fragment处理呢?所以Fragment本身是没有onBackPressed的.但是,实际上给Fragment添加类似onBackPressed的功能的办法是存在的,只是Google把它设计成交给开发者自行管理了.

这个功能是完全基于Google的appcompat包实现的,但是若是我们想要使用这个功能,可能需要较高版本的appcompat包,或者你把项目迁移到AndroidX(迁移方式下面会介绍).

我们可以使用FragmentActivity(AppCompatActivity继承了FragmentActivity)的addOnBackPressedCallback方法为你的Fragment提供拦截OnBackPressed的功能了.(非AndroidX的其他版本可能也有实现了这个功能)

public void addOnBackPressedCallback(@NonNull LifecycleOwner owner, 
        @NonNull OnBackPressedCallback onBackPressedCallback)

OnBackPressedCallback#handleOnBackPressed需要返回一个boolean值。如果你在这个回调里拦截了onBackPressed应该返回true,说明你自己已经处理了本次返回键按下的操作,这样你的Fragment就不会被弹出返回栈了。

值得注意的是,这个函数的第一个参数,一个LifecycleOwner,Activity和Fragment都是LifecycleOwner,用于提供组件的生命周期,这个参数可以帮我们自动管理OnBackPressedCallback回调,你无需手动将他从Activity中移除,在LifecycleOwner的ON_DESTROY事件来到的时候,他会被自动移除列表,你无需担心内存泄漏,框架会帮你完成这些事情。

/**
 * Interface for handling {@link ComponentActivity#onBackPressed()} callbacks without
 * strongly coupling that implementation to a subclass of {@link ComponentActivity}.
 *
 * @see ComponentActivity#addOnBackPressedCallback(LifecycleOwner, OnBackPressedCallback)
 * @see ComponentActivity#removeOnBackPressedCallback(OnBackPressedCallback)
 */
public interface OnBackPressedCallback {
    /**
     * Callback for handling the {@link ComponentActivity#onBackPressed()} event.
     *
     * @return True if you handled the {@link ComponentActivity#onBackPressed()} event. No
     * further {@link OnBackPressedCallback} instances will be called if you return true.
     */
    boolean handleOnBackPressed();
}

我们可以看到Activity内管理的OnBackPressedCallback的执行循序与添加时间有关.最后被添加进去的能最先得到执行.

public void addOnBackPressedCallback(@NonNull LifecycleOwner owner,
        @NonNull OnBackPressedCallback onBackPressedCallback) {
    Lifecycle lifecycle = owner.getLifecycle();
    if (lifecycle.getCurrentState() == Lifecycle.State.DESTROYED) {
        // Already destroyed, nothing to do
        return;
    }
    // Add new callbacks to the front of the list so that
    // the most recently added callbacks get priority
    mOnBackPressedCallbacks.add(0, new LifecycleAwareOnBackPressedCallback(
            lifecycle, onBackPressedCallback));
}

可以看到它是添加到mOnBackPressedCallbacks这个List的最前面的.

startFragmentForResult方法在哪?对不起和OnBackPressed一样,Google没有直接为我们实现这个方法,但这并不代表Fragment没有这个功能,你当然可以直接用定义getter的方式来获取Fragment上内容,但这并不是最佳实践,为了规范编码我们最好还是使用公共的API

Fragment#setTargetFragment可以给当前Fragment设置一个目标Fragment和一个请求码

public void setTargetFragment(@Nullable Fragment fragment, int requestCode)

当当前Fragment完成相应的任务后,我们可以这样将返回值送回给我们的目标Fragment通过Intent

getTargetFragment().onActivityResult(getTargetRequestCode(),
Activity.RESULT_OK,new Intent());

不过要注意,目标Fragment和被请求的Fragment必须在同一个FragmentManager的管理下,否则就会报错

好了如果你现在使用的appcompat包没有上面的骚操作.那么下面我将带你迁移到AndroidX.

这里可能有人会问AndroidX是什么?

简单来讲AndroidX就是一个与平台解绑的appcompat(低版本兼容高版本功能)库,也就是说在build.gradle中不需要再与compileSdkVersion写成一样,例如之前这样的写法:

compile 'com.android.support:appcompat-v7:24.+'

(注:使用24.+则表明使用 24. 开头的版本的最新版本,若直接使用+号则表明直接使用该库的最新版本。

现在可以写成:

implementation 'androidx.appcompat:appcompat:1.1.0-alpha02'

(注:新的依赖方式implementation与compile功能相同,但是implementation无法在该模块内引用依赖的依赖,但compile可以,这么做的好处是可以加快编译速度。新的依赖方式api与compile完全相同,只是换了名字而已)

在Android Studo3.0以上中的Refactor->Migrate to AndroidX的选点击之后即可将项目迁移到AndroidX,在确认的时会提示你将项目备份以免迁移失败时丢失原有项目,通常情况下不会迁移失败,只是迁移的过程会花费很多的时间,如果项目很大,迁移时间会很长,这时即使Android Studio的CPU利用率为0也不要关闭, 但是如果发生迁移失败,这时候就需要手动迁移了。

一些使用gradle依赖的一些第三方库中的某些类可能继承了android.support.v4包下的Fragment,但迁移到AndroidX后appcompat的Fragment变成了androidx.fragment.app包下,原有的代码下会画红线,Android Studio也会警告你出现错误,但是不用担心,依然可以正常编译,Android Studio在编译的时候会自动完成基类的替换,但前提是你要确保你项目里的gradle.properties进行了如下设置。

android.useAndroidX=true

android.enableJetifier=true

为了消除这些难看的红线,你可以直接将新的Fragment使用这种方式强制转换成原有的Fragment。

TextureSupportMapFragment mapFragment = TextureSupportMapFragment
.class.cast(getChildFragmentManager()
.findFragmentById(R.id.map_view));

同理,也可以将旧的Fragment强制类型转换成新的Fragment.

Fragment f = Fragment.class.cast(mapFragment);

(注:上面的TextureSupportMapFragment是一个典型案例,他是高德地图SDK中的Fragment,它本身已经继承了v4包下的Fragment,可以用过上面的转换来使他兼容AndroidX)

最后补充一个小Tips:当我们在使用Fragment#getActivity()时返回的是一个可空值,如果没有判空检查在Android Studio中将会出现一个恶心的黄色警告,你可以使用requireActivity()来代替它,同样的方法还有requireFragmentManager()等.

Fragment生命周期

Fragment拥有Activity所有的生命周期回调函数并且由于自身特点还扩展了一些回调函数,如果不熟悉Fragment,很容易凭直觉造成误会.例如,一个Fragment并不会因为在Fragment回退栈上有其他Fragment把它盖住,又或者是你使用FragmentTransition将它hide而导致他onPause,onPause只跟此Fragment依附的Activity有关,这在Fragment的源码中写得清清楚楚.

/**
 * Called when the Fragment is no longer resumed.  This is generally
 * tied to {@link Activity#onPause() Activity.onPause} of the containing
 * Activity's lifecycle.
 */
@CallSuper
public void onPause() {
    mCalled = true;
}

那当我们想在Fragment不显示时做一些事情要怎么办呢?我们有onHiddenChanged回调,当Fragment的显示状态通过FragmentTransition改变时(hide和show),就会回调这个函数,参数hidden将告诉你这个Fragment现在是被隐藏还是显示着.

/**
 * Called when the hidden state (as returned by {@link #isHidden()} of
 * the fragment has changed.  Fragments start out not hidden; this will
 * be called whenever the fragment changes state from that.
 * @param hidden True if the fragment is now hidden, false otherwise.
 */
public void onHiddenChanged(boolean hidden) {
}

常用的回调有这些:

  • onInflate(Context,AttributeSet,Bundle)只有硬编码在xml中的Fragment(即使用fragment标签)才会回调此方法,这与自定义View十分类似,在实例化xml布局时该方法会被调用,先于onAttach.

  • onAttach(Context)执行该方法时,Fragment与Activity已经完成绑定,当一个Fragment被添加到FragmentManager时,如果不是在xml中直接定义fragment标签,那么该方法总是最先被回调.该方法传入一个Context对象,实际上就是该Fragment依附的Activity.重写该方法时记得要调用父类的super.onAttach,父类的onAttach调用返回后,此时调用getActivity将不会返回null,但是Activity#onCreate可能还有没有执行完毕(如果是在xml中定义,这种情况就会发生,因为此时这个回调的这个发生的时间也就是你在Activity#onCreate里setContentView的时间,直到Fragment#onViewCreated返回之后,Activity#onCreate才会继续执行)。

  • onCreate(Bundle)用来初始化Fragment。它总是在onAttach执行完毕后回调,可通过参数savedInstanceState获取之前保存的值,记得一定要调用父类的super.onCreate。

  • onCreateView(LayoutInflater,ViewGroup,Bundle)需要返回一个View用来初始化Fragment的布局,它总是在onCreate执行完毕后回调。默认返回null,值得注意的是,若返回null Fragment#onViewCreated将会被跳过,且如果是在xml中定义fragment标签并用name指定某个Fragment,则这个方法不允许返回null,否则就会报错。当使用ViewPager+Fragment时此方法可能会被多次调用(与Fragment#onDestroyView成对调用)。

  • onActivityCreated(Bundle)执行该方法时,与Fragment绑定的Activity的onCreate方法已经执行完成并返回,若在此方法之前与Activity交互交互没有任何保证,引用了未初始化的资源就会应发空指针异常。

  • onStart()执行该方法时,Fragment所在的Activity由不可见变为可见状态

  • onResume()执行该方法时,Fragment所在的Activity处于活动状态,用户可与之交互.

  • onPause()执行该方法时,Fragment所在的Activity处于暂停状态,但依然可见,用户不能与之交互,比如Dialog盖住了Activity

  • onStop()执行该方法时,Fragment所在的Activity完全不可见

  • onSaveInstanceState(Bundle)保存当前Fragment的状态。该方法会自动保存Fragment的状态,比如EditText键入的文本,即使Fragment被回收又重新创建,一样能恢复EditText之前键入的文本,说实话我不太喜欢这个方法,保存到Bundle里的设计实在是太蠢了,不过好在现在已经有了代替它的方案,Google的Android Jetpack MVVM框架,之后我也会专门出一篇文章来介绍。

  • onDestroyView()销毁与Fragment有关的视图,但未与Activity解除绑定,一般在这个回调里解除Fragment对视图的引用。通常在ViewPager+Fragment的方式下会使用并重写此方法,并且与Fragment#onCreateView一样可能是多次的。

  • onDestroy()销毁Fragment。通常按Back键退出或者Fragment被移除FragmentManager时调用此方法,此时应该清理Fragment中所管理的所有数据,它会在onDetach之前回调。

  • onDetach()解除与Activity的绑定。在onDestroy方法之后调用。Fragment生命周期的最末期,若在super.onDetach返回后getActivity(),你将会得到一个null。

Fragment管理

使用 FragmentManager 执行的操作包括:

  • 通过 findFragmentById()(对于在 Activity 布局中提供 UI 的片段)或findFragmentByTag()(对于提供或不提供 UI 的片段)获取 Activity 中存在的片段
  • 通过 popBackStack()(模拟用户发出的 Back 命令)将片段从返回栈中弹出
  • 通过 addOnBackStackChangedListener() 注册一个侦听返回栈变化的侦听器
  • 通过 add()添加一个Fragment
  • 通过 remove() 从Activity中移除一个Fragment
  • 通过 replace() 使用另一个Fragment替换当前的,实际上就是remove()然后add()的结合
  • 通过 hide() 隐藏Fragment,实际上是设置依附的ViewGroup隐藏,即View.Gone
  • 通过 show() 显示隐藏的Fragment,实际上是设置依附的ViewGroup显示,即View.VISIBLE
  • 通过 commit() 真正的操作Fragment状态

Fragment 与 Activity 通信

Activity -> Fragment

public class FragmentActivity extends Activity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_fragment);
        ExampleFragment fragment = new ExampleFragment();
        // 创建参数
        Bundle bundle = new Bundle();
        bundle.putString("argKey", "value");
        fragment.setArguments(bundle);
        getFragmentManager().beginTransaction()
        .add(R.id.fragment_container, fragment)
        .commit();

        // 略...
        fragment.apiFuncation();
    }
}

public static class ExampleFragment extends Fragment {
    @Override
    public View onCreateView(LayoutInflater inflater, ViewGroup container,
                             Bundle savedInstanceState) {
        // 获取
        Bundle bundle = getArguments();
        String arg = bundle.getString("argKey");
        return inflater.inflate(R.layout.example_fragment, container, false);
    }
}

Activity <- Fragment

在Fragment可以通过getActivity()来获取Fragment所依附的Activity实例,Activity也可以通过 findFragmentById() 或 findFragmentByTag()来获取对应的Fragment。

Fragment的加载过程

使用getSupportFragmentManager()方法获取FragmentManager,当前Activity就必须继承于FragmentActivity以及其子类。

// FragmentActivity类:
    final FragmentController mFragments = FragmentController.createController(new FragmentActivity.HostCallbacks());
    
    public FragmentManager getSupportFragmentManager() {
        return this.mFragments.getSupportFragmentManager();
    }
    // 内部类
    class HostCallbacks extends FragmentHostCallback<FragmentActivity> {
        public HostCallbacks() {
            super(FragmentActivity.this);
        }
        ......
    }
    
// FragmentController类:
    private final FragmentHostCallback<?> mHost;

    public static FragmentController createController(FragmentHostCallback<?> callbacks) {
        return new FragmentController(callbacks);
    }

    private FragmentController(FragmentHostCallback<?> callbacks) {
        this.mHost = callbacks;
    }
    
    public FragmentManager getSupportFragmentManager() {
        return this.mHost.getFragmentManagerImpl();
    }
    
// FragmentHostCallback类:
    FragmentHostCallback(@NonNull FragmentActivity activity) {
        // 关注一下第三个参数activity.mHandler
        this(activity, activity, activity.mHandler, 0);
    }

    FragmentHostCallback(@Nullable Activity activity, @NonNull Context context, @NonNull Handler handler, int windowAnimations) {
        // 初始化了FragmentManagerImpl类
        this.mFragmentManager = new FragmentManagerImpl();
        this.mActivity = activity;
        this.mContext = (Context)Preconditions.checkNotNull(context, "context == null");
        // 初始化了Handler,该mHandler会在commit操作中用到
        this.mHandler = (Handler)Preconditions.checkNotNull(handler, "handler == null");
        this.mWindowAnimations = windowAnimations;
    }
    
    FragmentManagerImpl getFragmentManagerImpl() {
        return this.mFragmentManager;
    }
    
// FragmentManagerImpl类:
    final class FragmentManagerImpl extends FragmentManager implements Factory2
  • getSupportFragmentManager()方法中,出现了mFragments
  • mFragments实际为FragmentController,并且将FragmenActivity的内部类HostCallbacks通过构造参数传入该类中,并保存到成员变量mHost中
  • HostCallbacks为FragmentActivity的内部类,其继承于类FragmentHostCallback。并且HostCallbacks构造方法中也同时调用了其父类FragmentHostCallback的构造方法,并初始化了类FragmentManagerImpl,而FragmentManagerImpl继承于FragmentManager
  • 回到第1步的方法getSupportFragmentManager()中,该方法里调用了mFragments.getSupportFragmentManager()方法
  • mFragments.getSupportFragmentManager()方法里又调用了本部分的最后一步mHost.getFragmentManagerImpl()方法中,第2步讲到后面会使用。并且最后返回第3步所说的实例化的FragmentManagerImpl类

我们可以很清晰的看到mFragments被final修饰而且又是类成员,因此一个FragmentActivity对应一个FragmentController、一个FragmentHostCallback和一个FragmentManagerImpl。

// FragmentManagerImpl类:
    public FragmentTransaction beginTransaction() {
        return new BackStackRecord(this);
    }
    
// BackStackRecord类:
    final class BackStackRecord extends FragmentTransaction
                    implements BackStackEntry, OpGenerator {
        ......
        public BackStackRecord(FragmentManagerImpl manager) {
            this.mManager = manager;
        }
        ...
    }

其实就是返回了继承于FragmentTransaction的BackStackRecord类。注意啦BackStackRecord类很重要,非常重要。本文以android-28为标准而讲解,而本类在28中修改很大,28之前的版本BackStackRecord实现了Runnable接口,具体的可自行查看。该类直译过来可被称为:返回堆栈记录,此后的有关fragment的基本所有操作都是通过它来完成。

// BackStackRecord类:
    ArrayList<BackStackRecord.Op> mOps = new ArrayList();

    public FragmentTransaction add(Fragment fragment, @Nullable String tag) {
        this.doAddOp(0, fragment, tag, 1);
        return this;
    }
    
    private void doAddOp(int containerViewId, Fragment fragment, @Nullable String tag, int opcmd) {
        // 获取fragment的Class对象
        Class fragmentClass = fragment.getClass();
        // 获取该fragment对象的修饰符
        int modifiers = fragmentClass.getModifiers();
        // 如该fragment为:匿名类或者不是public修饰符标识的类或者(它是内部类且不是静态的)
        if (fragmentClass.isAnonymousClass() || !Modifier.isPublic(modifiers) || fragmentClass.isMemberClass() && !Modifier.isStatic(modifiers)) {
            // 则抛出如下异常
            throw new IllegalStateException("Fragment " + fragmentClass.getCanonicalName() + " must be a public static class to be  properly recreated from" + " instance state.");
        } else {
            fragment.mFragmentManager = this.mManager;
            if (tag != null) {
                // 防止同一个fragment被add多次并且设置了多个不同的tag
                // 如果tag不等于空,并且tag不等于fragment.mTag
                if (fragment.mTag != null && !tag.equals(fragment.mTag)) {
                    // 则抛出如下异常
                    throw new IllegalStateException("Can't change tag of fragment " + fragment + ": was " + fragment.mTag + " now " + tag);
                }

                fragment.mTag = tag;
            }

            if (containerViewId != 0) {
                // 容器视图id,即FrameLayout布局id
                if (containerViewId == -1) {
                    throw new IllegalArgumentException("Can't add fragment " + fragment + " with tag " + tag + " to container view with no id");
                }
                // 方法多次add其containerViewId且设置多个不同的containerViewId
                if (fragment.mFragmentId != 0 && fragment.mFragmentId != containerViewId) {
                    throw new IllegalStateException("Can't change container ID of fragment " + fragment + ": was " + fragment.mFragmentId + " now " + containerViewId);
                }

                fragment.mContainerId = fragment.mFragmentId = containerViewId;
            }

            this.addOp(new BackStackRecord.Op(opcmd, fragment));
        }
    }
    
    void addOp(BackStackRecord.Op op) {
        this.mOps.add(op);
        op.enterAnim = this.mEnterAnim;
        op.exitAnim = this.mExitAnim;
        op.popEnterAnim = this.mPopEnterAnim;
        op.popExitAnim = this.mPopExitAnim;
    }
    
// BackStackRecord内部类Op:
    static final class Op {
        int cmd;//指令:代表对fragment的操作,比如:add==1
        Fragment fragment;//保存要操作的fragment
        // 以下四个为动画设置
        int enterAnim;
        int exitAnim;
        int popEnterAnim;
        int popExitAnim;

        Op() {
        }

        Op(int cmd, Fragment fragment) {
            this.cmd = cmd;
            this.fragment = fragment;
        }
    }

再次将此部分有关代码放到了一起,接着一步一步说明一下吧:

  • 从add操作开始接着调用自身的doAddOp(0, fragment, tag, 1)方法,并设置Op中的cmd指令为1
  • doAddOp(0, fragment, tag, 1)方法中判断一些异常情况后设置fragment的成员属性mContainerId和mFragmentId为containerViewId;并且继续执行自身的addOp(new BackStackRecord.Op(opcmd, fragment))方法。
  • addOp(new BackStackRecord.Op(opcmd, fragment))方法中,就是将Op对象加入到mOps集合中,并设置动画。
// BackStackRecord类:
    public FragmentTransaction show(Fragment fragment) {
        this.addOp(new BackStackRecord.Op(5, fragment));
        return this;
    }

show操作其实只是调用addOp(new BackStackRecord.Op(5, fragment))方法,设置一下Op类的cmd指令。

// BackStackRecord类:
    public int commit() {
        return this.commitInternal(false); // 注意这个false哦
    }
    
    int commitInternal(boolean allowStateLoss) {
        // 若重复commit,则会抛出此异常
        if (this.mCommitted) {
            throw new IllegalStateException("commit already called");
        } else {
            if (FragmentManagerImpl.DEBUG) {
                Log.v("FragmentManager", "Commit: " + this);
                LogWriter logw = new LogWriter("FragmentManager");
                PrintWriter pw = new PrintWriter(logw);
                this.dump("  ", (FileDescriptor)null, pw, (String[])null);
                pw.close();
            }

            this.mCommitted = true;
            // 这个成员默认是false,只有我们自己调用了addToBackStack方法,才会设置为true
            if (this.mAddToBackStack) {
                this.mIndex = this.mManager.allocBackStackIndex(this);
            } else {
                this.mIndex = -1;
            }
            // 此mManager我们上面第一部分讲解过,实际为FragmentManagerImpl类
            this.mManager.enqueueAction(this, allowStateLoss);
            return this.mIndex;
        }
    }
    
// FragmentManagerImpl类:
    // 注意:参数action为BackStackRecord类,而allowStateLoss为false,上面有说明
    public void enqueueAction(FragmentManagerImpl.OpGenerator action, boolean allowStateLoss) {
        if (!allowStateLoss) {
            // 状态丢失的异常检查(具体请参考:https://www.jianshu.com/p/aa735c60c867)
            // 如果我们提交使用的是commit方法,则会走到该判断里来,因为commit方法allowStateLoss传的是false。如果我们提交使用的是commitAllowingStateLoss方法,则不会走到该判断中来,因为commitAllowingStateLoss方法传入的allowStateLoss为true
            this.checkStateLoss();
        }

        synchronized(this) {
            if (!this.mDestroyed && this.mHost != null) {
                if (this.mPendingActions == null) {
                    this.mPendingActions = new ArrayList();
                }
                // 加入待定任务队列中,mPendingActions是ArrayList
                this.mPendingActions.add(action);
                this.scheduleCommit();
            } else if (!allowStateLoss) {
                throw new IllegalStateException("Activity has been destroyed");
            }
        }
    }
    
    void scheduleCommit() {
        synchronized(this) {
            boolean postponeReady = this.mPostponedTransactions != null && !this.mPostponedTransactions.isEmpty();
            boolean pendingReady = this.mPendingActions != null && this.mPendingActions.size() == 1;
            if (postponeReady || pendingReady) {
                this.mHost.getHandler().removeCallbacks(this.mExecCommit);
                this.mHost.getHandler().post(this.mExecCommit);
            }

        }
    }
  • ft.commit()操作实际上调用了BackStackRecord类自身的commitInternal方法,然后判断是否设置了mAddToBackStack,最后又继续调用了FragmentManagerImpl类中的enqueueAction方法继续执行。
  • FragmentManagerImpl类中的enqueueAction方法中有两个参数:action和allowStateLoss,而代码中也说明了allowStateLoss为false(详细请看上面代码部分),因此我们主要需要关注的还是action这个参数,action实际上是FragmentManagerImpl类中的OpGenerator接口,而实现OpGenerator接口的地方有两个:一个是FragmentManagerImpl类中的内部类PopBackStackState(后面讲“回退栈”时再详细说明),另一个就是我们所熟悉的BackStackRecord类。接着说流程:在enqueueAction方法中将我们要操作的action添加到待定任务队列中,继续执行自身的scheduleCommit()方法。
  • 我们可以从代码中看到scheduleCommit()方法中,调用了Handler的post方法,执行了一个任务mExecCommit,是否还记得mHost是谁?在上面第一部分实例化FragmentHostCallback类时传入了FragmentActivity,继而初始化了mHandler,而mHost正是FragmentHostCallback类型,而mHost.getHandler()返回的正是此时的mHandler。

从上面的三步中我们了解到了,现在逻辑以及到了mExecCommit(Runnable)的run方法里,我们先不急看run()方法,我们回来看一下enqueueAction()方法为什么把action添加进入mPendingActions里?因为从后面的代码中可以了解每次commit后都会将mPendingActions集合清空,那为什么还要使用集合保存呢?不知道别的小伙伴有没有这方面的纠结,我一开始反正是纠结的。那我们来分析一下使用mPendingActions的原因:我们知道了commit的后续操作是在mExecCommit(Runnable)的run方法里,而mExecCommit又是通过Handler当作消息post出去的,因此这里就可以把commit操作当作是在异步中执行的逻辑。这又是什么原因呢?那是因为Handler发出去的消息并不是被Looper马上执行的,而是需要先从消息队列中取出来再去执行,因此在这个空隙,我们可以会多次切换fragment(场景:app的首页是由底部多个Tab+多个fragmnet实现,我们频繁多次切换tab)而导致多次生成action,因此需要一个集合来当作队列将多个action添加进去,在后面统一处理。

这里我们再说一下几种提交操作的方法:

  • commit();
  • commitAllowingStateLoss();
  • commitNow();
  • commitNowAllowingStateLoss();

commit() vs commitAllowingStateLoss()

用commit()提交有时候会遇到IllegalStateException, 说你在onSaveInstanceState()之后提交, commit()和commitAllowingStateLoss()在实现上唯一的不同就是当你调用commit()的时候, FragmentManger会检查是否已经存储了它自己的状态, 如果已经存了, 就抛出IllegalStateException。 那么如果你调用的是commitAllowingStateLoss(),则FragmentManger不会检查是否已经存储了它自己的状态(上面代码中已添加备注说明),并且要是在onSaveInstanceState()之后,你可能会丢失掉什么状态呢? 答案是你可能会丢掉FragmentManager的状态, 即save之后任何被添加或被移除的Fragments.

commit(), commitNow() 和 executePendingTransactions()

使用commit()的时候, 一旦调用, 这个commit并不是立即执行的, 它会被发送到主线程的任务队列当中去, 当主线程准备好执行它的时候执行. popBackStack()的工作也是这样, 发送到主线程任务队列中去. 也即说它们都是异步的.但是有时候你希望你的操作是立即执行的,之前的开发者会在commit()调用之后加上 executePendingTransactions()来保证立即执行, 即变异步为同步.support library从v24.0.0开始提供了 commitNow()方法,之前用executePendingTransactions()会将所有pending在队列中还有你新提交的transactions都执行了, 而commitNow()将只会执行你当前要提交的transaction. 所以commitNow()避免你会不小心执行了那些你可能并不想执行的transactions.

但是你不能对要加在back stack中的transaction使用commitNow(),即addToBackStack()和commitNow()不能同时使用.为什么呢? 想想一下, 如果你有一个提交使用了commit(), 紧接着又有另一个提交使用了commitNow(), 两个都想加入back stack, 那back stack会变成什么样呢? 到底是哪个transaction在上, 哪个在下? 答案将是一种不确定的状态, 因为系统并没有提供任何保证来确保顺序, 所以系统决定干脆不支持这个操作.前面提过popBackStack()是异步的, 所以它同样也有一个同步的兄弟popBackStackImmediate().所以实际应用的时候怎么选择呢? 1.如果你需要同步的操作, 并且你不需要加到back stack里, 使用commitNow(). support library在FragmentPagerAdapter里就使用了commitNow()来保证在更新结束的时候, 正确的页面被加上或移除. 2.如果你操作很多transactions, 并且不需要同步, 或者你需要把transactions加在back stack里, 那就使用commit(). 3.如果你希望在某一个指定的点, 确保所有的transactions都被执行, 那么使用executePendingTransactions().

好啦,我们可以继续分析接下的啦(mExecCommit(Runnable)的run方法):

// FragmentManagerImpl类:
    Runnable mExecCommit = new Runnable() {
        public void run() {
            FragmentManagerImpl.this.execPendingActions();
        }
    };
    
    public boolean execPendingActions() {
        this.ensureExecReady(true);

        boolean didSomething;
        // mTmpRecords:临时存储所有待执行的动作(mPendingActions)生成的 BackStackRecord
        // mTmpIsPop:存储 BackStackRecord 是否为出栈。
        for(didSomething = false; this.generateOpsForPendingActions(this.mTmpRecords, this.mTmpIsPop); didSomething = true) {
            this.mExecutingActions = true;

            try {
                this.removeRedundantOperationsAndExecute(this.mTmpRecords, this.mTmpIsPop);
            } finally {
                this.cleanupExec();
            }
        }

        this.doPendingDeferredStart();
        this.burpActive();
        return didSomething;
    }
    
    // 遍历 mPendingActions 调用 OpGenerator.generateOps() 方法生成 BackStackRecord 添加到 mTmpRecords 并把是否为出栈添加到 mTmpIsPop 中
    private boolean generateOpsForPendingActions(ArrayList<BackStackRecord> records, ArrayList<Boolean> isPop) {
        boolean didSomething = false;
        synchronized(this) {
            if (this.mPendingActions != null && this.mPendingActions.size() != 0) {
                int numActions = this.mPendingActions.size();

                for(int i = 0; i < numActions; ++i) {
                    didSomething |= ((FragmentManagerImpl.OpGenerator)this.mPendingActions.get(i)).generateOps(records, isPop);
                }
                // 清空待定任务队列
                this.mPendingActions.clear();
                this.mHost.getHandler().removeCallbacks(this.mExecCommit);
                return didSomething;
            } else {
                return false;
            }
        }
    }
    
// BackStackRecord类
    public boolean generateOps(ArrayList<BackStackRecord> records, ArrayList<Boolean> isRecordPop) {
        if (FragmentManagerImpl.DEBUG) {
            Log.v("FragmentManager", "Run: " + this);
        }

        records.add(this);
        // 添加false
        isRecordPop.add(false);
        if (this.mAddToBackStack) {
            // 添加到“回退栈”中
            this.mManager.addBackStackState(this);
        }

        return true;
    }
    
// FragmentManagerImpl类的内部类PopBackStackState:
    private class PopBackStackState implements FragmentManagerImpl.OpGenerator {
        ...
        public boolean generateOps(ArrayList<BackStackRecord> records, ArrayList<Boolean> isRecordPop) {
            ...
            return FragmentManagerImpl.this.popBackStackState(records, isRecordPop, this.mName, this.mId, this.mFlags);
        }
    }
// FragmentManagerImpl类:
    boolean popBackStackState(ArrayList<BackStackRecord> records, ArrayList<Boolean> isRecordPop, String name, int id, int flags) {
        if (this.mBackStack == null) {
            return false;
        } else {
            int index;
            if (name == null && id < 0 && (flags & 1) == 0) {
                ...
                records.add(this.mBackStack.remove(index));
                // 添加true
                isRecordPop.add(true);
            } else {
                ...
                for(int i = this.mBackStack.size() - 1; i > index; --i) {
                    records.add(this.mBackStack.remove(i));
                    // 添加true
                    isRecordPop.add(true);
                }
            }

            return true;
        }
    }
    
    void addBackStackState(BackStackRecord state) {
        if (this.mBackStack == null) {
            this.mBackStack = new ArrayList();
        }
        // “回退栈” == mBackStack(ArrayList<BackStackRecord>)
        this.mBackStack.add(state);
    }

在 Runnable 中执行 execPendingActions() 方法,该方法分为几点来分析:

通过generateOpsForPendingActions方法遍历 mPendingActions 调用 OpGenerator.generateOps() 方法设置了 mTmpRecords(临时存储所有待执行的动作:BackStackRecord) 和 mTmpIsPop (存储 BackStackRecord 是否为出栈) OpGenerator.generateOps()方法,上面曾提起过OpGenerator接口会有两个地方实现,而BackStackRecord类实现OpGenerator接口中的generateOps()方法上面代码给出了源码,其实就是设置this自身添加到records(即mTmpRecords)集合中,并同时添加一个false到isRecordPop(即mTmpIsPop)集合里表示此动作不是“回退栈”的出栈操作。而另一个实现OpGenerator接口的generateOps()方法里isRecordPop(即mTmpIsPop)集合内添加的是true(源码已展示)

我们接着往下走removeRedundantOperationsAndExecute():

// FragmentManagerImpl类:
    private void removeRedundantOperationsAndExecute(ArrayList<BackStackRecord> records, ArrayList<Boolean> isRecordPop) {
        if (records != null && !records.isEmpty()) {
            if (isRecordPop != null && records.size() == isRecordPop.size()) {
                this.executePostponedTransaction(records, isRecordPop);
                int numRecords = records.size();
                int startIndex = 0;

                for(int recordNum = 0; recordNum < numRecords; ++recordNum) {
                    boolean canReorder = ((BackStackRecord)records.get(recordNum)).mReorderingAllowed;
                    if (!canReorder) {
                        if (startIndex != recordNum) {
                            this.executeOpsTogether(records, isRecordPop, startIndex, recordNum);
                        }

                        int reorderingEnd = recordNum + 1;
                        // 根据上面的分析,只有“回退栈”执行出栈才会执行此处代码
                        if ((Boolean)isRecordPop.get(recordNum)) {
                            while(reorderingEnd < numRecords && (Boolean)isRecordPop.get(reorderingEnd) && !((BackStackRecord)records.get(reorderingEnd)).mReorderingAllowed) {
                                ++reorderingEnd;
                            }
                        }

                        this.executeOpsTogether(records, isRecordPop, recordNum, reorderingEnd);
                        startIndex = reorderingEnd;
                        recordNum = reorderingEnd - 1;
                    }
                }

                if (startIndex != numRecords) {
                    this.executeOpsTogether(records, isRecordPop, startIndex, numRecords);
                }

            } else {
                throw new IllegalStateException("Internal error with the back stack records");
            }
        }
    }
    
    private void executeOpsTogether(ArrayList<BackStackRecord> records, ArrayList<Boolean> isRecordPop, int startIndex, int endIndex) {
        boolean allowReordering = ((BackStackRecord)records.get(startIndex)).mReorderingAllowed;
        boolean addToBackStack = false;
        if (this.mTmpAddedFragments == null) {
            this.mTmpAddedFragments = new ArrayList();
        } else {
            this.mTmpAddedFragments.clear();
        }

        this.mTmpAddedFragments.addAll(this.mAdded);
        Fragment oldPrimaryNav = this.getPrimaryNavigationFragment();

        int postponeIndex;
        for(postponeIndex = startIndex; postponeIndex < endIndex; ++postponeIndex) {
            BackStackRecord record = (BackStackRecord)records.get(postponeIndex);
            boolean isPop = (Boolean)isRecordPop.get(postponeIndex);
            // 对mOps进行优化,add或者remove(mOps即第三部分提到的保存add进的fragmnet集合)
            if (!isPop) {
                // 在28之前这里会执行 expandReplaceOps 方法把 replace 替换(目标 fragment 已经被 add )成相应的 remove 和 add 两个操作,或者(目标 fragment 没有被 add )只替换成 add 操作。
                oldPrimaryNav = record.expandOps(this.mTmpAddedFragments, oldPrimaryNav);
            } else {
                oldPrimaryNav = record.trackAddedFragmentsInPop(this.mTmpAddedFragments, oldPrimaryNav);
            }

            addToBackStack = addToBackStack || record.mAddToBackStack;
        }

        this.mTmpAddedFragments.clear();
        if (!allowReordering) {
            FragmentTransition.startTransitions(this, records, isRecordPop, startIndex, endIndex, false);
        }
        // 如果allowReordering为true,则此方法后面会走不通,则会走下面的判断,最终都会到达我们这部分最重要的方法————moveToState
        executeOps(records, isRecordPop, startIndex, endIndex);
        postponeIndex = endIndex;
        if (allowReordering) {
        /**
         * allowReordering为true,走此逻辑
         *  允许重新排序(需要自己调用FragmentTransaction.setReorderingAllowed()方法设置)
         *  必须启用fragment事务中的重新排序(即allowReordering),才能
         *  使延迟的fragment过渡生效,具体用法请参考:https://www.jianshu.com/p/232073710172
        */
            ArraySet<Fragment> addedFragments = new ArraySet();
            this.addAddedFragments(addedFragments);
            // 此方法最后会走到moveToState方法,具体源码请自行查看
            postponeIndex = this.postponePostponableTransactions(records, isRecordPop, startIndex, endIndex, addedFragments);
            this.makeRemovedFragmentsInvisible(addedFragments);
        }
        ...
    }
    
    private static void executeOps(ArrayList<BackStackRecord> records, ArrayList<Boolean> isRecordPop, int startIndex, int endIndex) {
        for(int i = startIndex; i < endIndex; ++i) {
            BackStackRecord record = (BackStackRecord)records.get(i);
            boolean isPop = (Boolean)isRecordPop.get(i);
            // 从上面分析可知isRecordPop取出来的是false(“回退栈”出栈时为trueif (isPop) {
                record.bumpBackStackNesting(-1);
                boolean moveToState = i == endIndex - 1;
                // 若为回退栈出栈操作,则执行此方法,
                // 此方法中根据op.cmd判断对framgnet进行相应的处理,
                // 与else分支相同的cmd指令处理逻辑不同
                record.executePopOps(moveToState);
            } else {
                record.bumpBackStackNesting(1);
                record.executeOps();
            }
        }
    }

我们从removeRedundantOperationsAndExecute()方法的源码中可以看到该方法实际上是对records集合中所有动作的startIndex(起始动作位置), recordNum(需要操作的动作个数)的设置,然后都会去调用executeOpsTogether()方法,而executeOpsTogether()方法我们只展示部分代码,其中会对mOps进行扩展操作,最后调用方法executeOps()继续操作,而方法executeOps中又经过判断最终调用BackStackRecord类的executeOps()方法。

// BackStackRecord类:
    void executeOps() {
        int numOps = this.mOps.size();
        // 遍历执行所有的mOps(包含我们commit操作前的所有其它操作,比如:add、hide等)
        for(int opNum = 0; opNum < numOps; ++opNum) {
            BackStackRecord.Op op = (BackStackRecord.Op)this.mOps.get(opNum);
            Fragment f = op.fragment;
            if (f != null) {
                f.setNextTransition(this.mTransition, this.mTransitionStyle);
            }
            // 根据op.cmd指令进行操作,相信根据下面每个分支的逻辑能分别出每个指令对应的操作
            switch(op.cmd) {
            case 1:
                f.setNextAnim(op.enterAnim);
                this.mManager.addFragment(f, false);
                break;
            case 2:
            default:
                throw new IllegalArgumentException("Unknown cmd: " + op.cmd);
            case 3:
                f.setNextAnim(op.exitAnim);
                this.mManager.removeFragment(f);
                break;
            case 4:
                f.setNextAnim(op.exitAnim);
                this.mManager.hideFragment(f);
                break;
            case 5:
                f.setNextAnim(op.enterAnim);
                this.mManager.showFragment(f);
                break;
            case 6:
                f.setNextAnim(op.exitAnim);
                this.mManager.detachFragment(f);
                break;
            case 7:
                f.setNextAnim(op.enterAnim);
                this.mManager.attachFragment(f);
                break;
            case 8:
                this.mManager.setPrimaryNavigationFragment(f);
                break;
            case 9:
                this.mManager.setPrimaryNavigationFragment((Fragment)null);
            }

            if (!this.mReorderingAllowed && op.cmd != 1 && f != null) {
                this.mManager.moveFragmentToExpectedState(f);
            }
        }
        // 只有没设置setReorderingAllowed(true)的才能继续,
        // 而设置的会在前面的某步逻辑当中走到moveToState方法内,上面有说明
        if (!this.mReorderingAllowed) {
            // 最后调用我们这部分最重要的方法:moveToState
            this.mManager.moveToState(this.mManager.mCurState, true);
        }
    }
 
 // 1. 提交add操作时将当前提交的fragmen添加进mActive和mAdded里
    // 并重置fragment.mAdded和fragment.mRemoving两个的状态
    public void addFragment(Fragment fragment, boolean moveToStateNow) {
        if (DEBUG) {
            Log.v("FragmentManager", "add: " + fragment);
        }
        // 调用makeActive,将fragment添加进mActive
        this.makeActive(fragment);
        if (!fragment.mDetached) {
            if (this.mAdded.contains(fragment)) {
                throw new IllegalStateException("Fragment already added: " + fragment);
            }

            synchronized(this.mAdded) {
                // 将fragment也添加进mAdded里
                this.mAdded.add(fragment);
            }
            // 设置mAdded和mRemoving状态
            fragment.mAdded = true;
            fragment.mRemoving = false;
            if (fragment.mView == null) {
                fragment.mHiddenChanged = false;
            }

            if (fragment.mHasMenu && fragment.mMenuVisible) {
                this.mNeedMenuInvalidate = true;
            }

            if (moveToStateNow) {
                this.moveToState(fragment);
            }
        }
    }
    void makeActive(Fragment f) {
        if (f.mIndex < 0) {
            f.setIndex(this.mNextFragmentIndex++, this.mParent);
            if (this.mActive == null) {
                this.mActive = new SparseArray();
            }
            // 将fragment添加进mActive
            this.mActive.put(f.mIndex, f);
            if (DEBUG) {
                Log.v("FragmentManager", "Allocated fragment index " + f);
            }
        }
    }

// 2. 提交remove操作时将当前提交的fragment从mAdded移除
    // 并重置fragment.mAdded和fragment.mRemoving两个的状态
    public void removeFragment(Fragment fragment) {
        if (DEBUG) {
            Log.v("FragmentManager", "remove: " + fragment + " nesting=" + fragment.mBackStackNesting);
        }

        boolean inactive = !fragment.isInBackStack();
        if (!fragment.mDetached || inactive) {
            synchronized(this.mAdded) {
                this.mAdded.remove(fragment);
            }

            if (fragment.mHasMenu && fragment.mMenuVisible) {
                this.mNeedMenuInvalidate = true;
            }

            fragment.mAdded = false;
            fragment.mRemoving = true;
        }

    }
    
// 3. 设置fragment.mHidden的状态为false
    public void showFragment(Fragment fragment) {
        if (DEBUG) {
            Log.v("FragmentManager", "show: " + fragment);
        }

        if (fragment.mHidden) {
            fragment.mHidden = false;
            fragment.mHiddenChanged = !fragment.mHiddenChanged;
        }

    }
    
// 4. 设置fragment.mHidden的状态为true
    public void hideFragment(Fragment fragment) {
        if (DEBUG) {
            Log.v("FragmentManager", "hide: " + fragment);
        }

        if (!fragment.mHidden) {
            fragment.mHidden = true;
            fragment.mHiddenChanged = !fragment.mHiddenChanged;
        }

    }

我们从executeOps()方法中可以看到该方法里通过for循环对mOps进行了遍历,而此次遍历会对我们本次commit提交的所有操作进行设置。比如我们上面列出的四中操作:add、remove、show和hide一样。

我们先来看这段代码中的两个集合:mAdded和mActive

  • mAdded:包含了所有已经 added 并且没有被从Activity中removed和detached的Fragments 注:如果一个 Fragment被添加到Activity中那么这个Fragment会被added到该列表。Fragment被从Activity中removed或者Fragment从Activity中detached,则就会被从该列表中移除。

  • mAdded 的一个超集,是绑定到一个 Activity 上的所有 Fragment。包括返回栈中所有的通过任何 FragmentTransaction 添加的 Fragments。这是非常重要的因为如下原因:

    • 当一个 Activity 要保存它的 State 时,它必须保存它所有 Fragment 的状态,因为 mActive 保存了所有 Fragment,所以系统只要存储这个列表里的 Fragment 的状态就好了。而mAdded 只是被序列化成一个整形数组,每个元素指向 Fragment 在 mActive 中的下标位置(这块在前面 Fragment 的存储与恢复中分析到了)。

    • 在恢复 Activity 的状态时,FragmentManager 的状态也会被恢复,mActive 列表就可以被用来恢复 mAdded 列表,因为保存状态的时候mAdded 被简单的保存为整形数组。

    • 当一个 Activity 经历它的各生命周期时,它必须引起所有绑定的 Fragment 经历各自的生命周期。

      该 Activity 的 FragmentManager 有义务去引导所有 Fragemnt 转换到正确的状态,这其中包括屏幕上可见的 Fragment 的 View 层级的初始化,并且调用正确的生命周期函数。

      为了确保完整,FragmentManager 将遍历mActive 中所有的 Fragment,而不仅仅是 mAdded。

    • 它持有所有 BackStack 返回栈引用的对象。

      这确保了返回栈中对 Fragment 操作的回滚能够实现。

注:如果一个Fragment被添加到Activity中那么这个Fragment会被added到该列表。只有在两种情况 Fragment才会被从该列表中移除:一是,Fragment被从Activity中移除并且没有在返回栈中;二是一个transaction从返回栈中被pop出来、Fragment的add或者replace操作被逆向,即返回栈不再持有 Fragment。

我们接着来说moveToState这个方法:

// FragmentManagerImpl类:
    void moveToState(int newState, boolean always) {
        if (this.mHost == null && newState != 0) {
            throw new IllegalStateException("No activity");
        } else if (always || newState != this.mCurState) {
            this.mCurState = newState;
            if (this.mActive != null) {
                int numAdded = this.mAdded.size();
                
                int numActive;
                // 遍历mAdded集合,肯定会走此代码逻辑
                for(numActive = 0; numActive < numAdded; ++numActive) {
                    Fragment f = (Fragment)this.mAdded.get(numActive);
                    // 将fragment移至预期状态
                    this.moveFragmentToExpectedState(f);
                }

                numActive = this.mActive.size();
                // // 遍历mActive集合(若调用回退栈出栈,则会走此出代码)
                for(int i = 0; i < numActive; ++i) {
                    Fragment f = (Fragment)this.mActive.valueAt(i);
                    // 当前framgnet不为空 并且 此时操作为remove或者detach 并且不是新添加的则会执行下面代码
                    if (f != null && (f.mRemoving || f.mDetached) && !f.mIsNewlyAdded) {
                        // // 将fragment移至预期状态
                        this.moveFragmentToExpectedState(f);
                    }
                }
                // fragment的成员属性f.mDeferStart为true才能走通下面代码(具体暂不分析)
                this.startPendingDeferredFragments();
                if (this.mNeedMenuInvalidate && this.mHost != null && this.mCurState == 4) {
                    this.mHost.onSupportInvalidateOptionsMenu();
                    this.mNeedMenuInvalidate = false;
                }
            }
        }
    }

我们来看一下moveToState方法中的参数newState,BackStackRecord类中的executeOps里传过来的是mManager.mCurState,而mManager.mCurState默认为0,即需要add的状态。我们现在回想一下fragment为什么会随着Activity的周期变化而变化呢?我们来看段代码:

// FragmentActivity类:
    protected void onCreate(@Nullable Bundle savedInstanceState) {
        this.mFragments.attachHost((Fragment)null);
        super.onCreate(savedInstanceState);
        ......
        this.mFragments.dispatchCreate();
    }

// FragmentController类:
    public void dispatchCreate() {
        this.mHost.mFragmentManager.dispatchCreate();
    }
    
// FragmentManagerImpl类:
    public void dispatchCreate() {
        this.mStateSaved = false;
        this.mStopped = false;
        this.dispatchStateChange(1);
    }
    private void dispatchStateChange(int nextState) {
        try {
            this.mExecutingActions = true;
            // 这里走到了moveToState
            this.moveToState(nextState, false);
        } finally {
            this.mExecutingActions = false;
        }

        this.execPendingActions();
    }

这段代码是从上到下的顺序执行的,我们可以看到在FragmentActivity的onCreate周期方法中一步一步的走到了moveToState,而moveToState正是走到fragment周期方法的关键(FragmentActivity的其它周期方法同onCreate方法也会走到对应的fragment的周期方法中)。既然moveToState是走到fragment周期方法的关键,那我们继续往下分析,上面已经说到会走到FragmentManagerImpl类的moveFragmentToExpectedState(f)方法中:

// FragmentManagerImpl类:
    void moveFragmentToExpectedState(Fragment f) {
        if (f != null) {
            int nextState = this.mCurState;
            if (f.mRemoving) {
                // 如果操作为remove则nextState设置为1或者0,用于后面判断
                if (f.isInBackStack()) {
                    nextState = Math.min(nextState, 1);
                } else {
                    nextState = Math.min(nextState, 0);
                }
            }
            // 继续走同名方法
            this.moveToState(f, nextState, f.getNextTransition(), f.getNextTransitionStyle(), false);
            // 如果当前View不为空,则添加布局执行动画
            if (f.mView != null) {
                Fragment underFragment = this.findFragmentUnder(f);
                if (underFragment != null) {
                    View underView = underFragment.mView;
                    ViewGroup container = f.mContainer;
                    int underIndex = container.indexOfChild(underView);
                    int viewIndex = container.indexOfChild(f.mView);
                    if (viewIndex < underIndex) {
                        container.removeViewAt(viewIndex);
                        container.addView(f.mView, underIndex);
                    }
                }

                if (f.mIsNewlyAdded && f.mContainer != null) {
                    if (f.mPostponedAlpha > 0.0F) {
                        f.mView.setAlpha(f.mPostponedAlpha);
                    }

                    f.mPostponedAlpha = 0.0F;
                    f.mIsNewlyAdded = false;
                    FragmentManagerImpl.AnimationOrAnimator anim = this.loadAnimation(f, f.getNextTransition(), true, f.getNextTransitionStyle());
                    if (anim != null) {
                        setHWLayerAnimListenerIfAlpha(f.mView, anim);
                        if (anim.animation != null) {
                            f.mView.startAnimation(anim.animation);
                        } else {
                            anim.animator.setTarget(f.mView);
                            anim.animator.start();
                        }
                    }
                }
            }

            if (f.mHiddenChanged) {
                // 完成显示隐藏fragment
                this.completeShowHideFragment(f);
            }

        }
    }
    
    void moveToState(Fragment f, int newState, int transit, int transitionStyle, boolean keepActive) {
        // 重新判断设置newState状态值
        if ((!f.mAdded || f.mDetached) && newState > 1) {
            newState = 1;
        }

        if (f.mRemoving && newState > f.mState) {
            if (f.mState == 0 && f.isInBackStack()) {
                newState = 1;
            } else {
                newState = f.mState;
            }
        }

        if (f.mDeferStart && f.mState < 3 && newState > 2) {
            newState = 2;
        }
        
        // 如果fragment自身的状态<=newState状态,则证明此时fragment是被创建阶段
        if (f.mState <= newState) {
            label297: {
                if (f.mFromLayout && !f.mInLayout) {
                    return;
                }

                if (f.getAnimatingAway() != null || f.getAnimator() != null) {
                    f.setAnimatingAway((View)null);
                    f.setAnimator((Animator)null);
                    this.moveToState(f, f.getStateAfterAnimating(), 0, 0, true);
                }
                // 判断fragment状态进行处理
                switch(f.mState) {
                case 0:
                    if (newState > 0) {
                        if (DEBUG) {
                            Log.v("FragmentManager", "moveto CREATED: " + f);
                        }

                        if (f.mSavedFragmentState != null) {
                            f.mSavedFragmentState.setClassLoader(this.mHost.getContext().getClassLoader());
                            f.mSavedViewState = f.mSavedFragmentState.getSparseParcelableArray("android:view_state");
                            f.mTarget = this.getFragment(f.mSavedFragmentState, "android:target_state");
                            if (f.mTarget != null) {
                                f.mTargetRequestCode = f.mSavedFragmentState.getInt("android:target_req_state", 0);
                            }

                            if (f.mSavedUserVisibleHint != null) {
                                f.mUserVisibleHint = f.mSavedUserVisibleHint;
                                f.mSavedUserVisibleHint = null;
                            } else {
                                f.mUserVisibleHint = f.mSavedFragmentState.getBoolean("android:user_visible_hint", true);
                            }

                            if (!f.mUserVisibleHint) {
                                f.mDeferStart = true;
                                if (newState > 2) {
                                    newState = 2;
                                }
                            }
                        }

                        f.mHost = this.mHost;
                        f.mParentFragment = this.mParent;
                        f.mFragmentManager = this.mParent != null ? this.mParent.mChildFragmentManager : this.mHost.getFragmentManagerImpl();
                        if (f.mTarget != null) {
                            if (this.mActive.get(f.mTarget.mIndex) != f.mTarget) {
                                throw new IllegalStateException("Fragment " + f + " declared target fragment " + f.mTarget + " that does not belong to this FragmentManager!");
                            }

                            if (f.mTarget.mState < 1) {
                                this.moveToState(f.mTarget, 1, 0, 0, true);
                            }
                        }

                        this.dispatchOnFragmentPreAttached(f, this.mHost.getContext(), false);
                        f.mCalled = false;
                        // 执行fragment的onAttach周期方法
                        f.onAttach(this.mHost.getContext());
                        if (!f.mCalled) {
                            throw new SuperNotCalledException("Fragment " + f + " did not call through to super.onAttach()");
                        }

                        if (f.mParentFragment == null) {
                            this.mHost.onAttachFragment(f);
                        } else {
                            f.mParentFragment.onAttachFragment(f);
                        }

                        this.dispatchOnFragmentAttached(f, this.mHost.getContext(), false);
                        if (!f.mIsCreated) {
                            this.dispatchOnFragmentPreCreated(f, f.mSavedFragmentState, false);
                            f.performCreate(f.mSavedFragmentState);
                            this.dispatchOnFragmentCreated(f, f.mSavedFragmentState, false);
                        } else {
                            f.restoreChildFragmentState(f.mSavedFragmentState);
                            f.mState = 1;
                        }

                        f.mRetaining = false;
                    }
                case 1:
                    this.ensureInflatedFragmentView(f);
                    if (newState > 1) {
                        if (DEBUG) {
                            Log.v("FragmentManager", "moveto ACTIVITY_CREATED: " + f);
                        }

                        if (!f.mFromLayout) {
                            ViewGroup container = null;
                            if (f.mContainerId != 0) {
                                if (f.mContainerId == -1) {
                                    this.throwException(new IllegalArgumentException("Cannot create fragment " + f + " for a container view with no id"));
                                }

                                container = (ViewGroup)this.mContainer.onFindViewById(f.mContainerId);
                                if (container == null && !f.mRestored) {
                                    String resName;
                                    try {
                                        resName = f.getResources().getResourceName(f.mContainerId);
                                    } catch (NotFoundException var9) {
                                        resName = "unknown";
                                    }

                                    this.throwException(new IllegalArgumentException("No view found for id 0x" + Integer.toHexString(f.mContainerId) + " (" + resName + ") for fragment " + f));
                                }
                            }

                            f.mContainer = container;
                           // 执行fragment的onCreateView周期方法 f.performCreateView(f.performGetLayoutInflater(f.mSavedFragmentState), container, f.mSavedFragmentState);
                            if (f.mView == null) {
                                f.mInnerView = null;
                            } else {
                                f.mInnerView = f.mView;
                                f.mView.setSaveFromParentEnabled(false);
                                if (container != null) {
                                    container.addView(f.mView);
                                }

                                if (f.mHidden) {
                                    f.mView.setVisibility(8);
                                }
                                // 执行fragment的onViewCreated周期方法
                                f.onViewCreated(f.mView, f.mSavedFragmentState);
                                this.dispatchOnFragmentViewCreated(f, f.mView, f.mSavedFragmentState, false);
                                f.mIsNewlyAdded = f.mView.getVisibility() == 0 && f.mContainer != null;
                            }
                        }

                        f.performActivityCreated(f.mSavedFragmentState);
                        this.dispatchOnFragmentActivityCreated(f, f.mSavedFragmentState, false);
                        if (f.mView != null) {
                            f.restoreViewState(f.mSavedFragmentState);
                        }
                        // 执行fragment的onActivityCreated周期方法
                        f.mSavedFragmentState = null;
                    }
                case 2:
                    if (newState > 2) {
                        if (DEBUG) {
                            Log.v("FragmentManager", "moveto STARTED: " + f);
                        }
                        // 执行framgnet的onStart周期方法
                        f.performStart();
                        this.dispatchOnFragmentStarted(f, false);
                    }
                case 3:
                    break;
                default:
                    break label297;
                }

                if (newState > 3) {
                    if (DEBUG) {
                        Log.v("FragmentManager", "moveto RESUMED: " + f);
                    }
                    // 执行framgnet的onResume周期方法
                    f.performResume();
                    this.dispatchOnFragmentResumed(f, false);
                    f.mSavedFragmentState = null;
                    f.mSavedViewState = null;
                }
            }
        // 如果fragment自身的状态>=newState状态,则证明此时fragment是被销毁阶段
        } else if (f.mState > newState) {
            switch(f.mState) {
            case 4:
                if (newState < 4) {
                    if (DEBUG) {
                        Log.v("FragmentManager", "movefrom RESUMED: " + f);
                    }
                    // 执行framgnet的onPause周期方法
                    f.performPause();
                    this.dispatchOnFragmentPaused(f, false);
                }
            case 3:
                if (newState < 3) {
                    if (DEBUG) {
                        Log.v("FragmentManager", "movefrom STARTED: " + f);
                    }
                    // 执行framgnet的onStop周期方法
                    f.performStop();
                    this.dispatchOnFragmentStopped(f, false);
                }
            case 2:
                if (newState < 2) {
                    if (DEBUG) {
                        Log.v("FragmentManager", "movefrom ACTIVITY_CREATED: " + f);
                    }

                    if (f.mView != null && this.mHost.onShouldSaveFragmentState(f) && f.mSavedViewState == null) {
                        this.saveFragmentViewState(f);
                    }
                    // 执行framgnet的onDestroyView周期方法
                    f.performDestroyView();
                    this.dispatchOnFragmentViewDestroyed(f, false);
                    if (f.mView != null && f.mContainer != null) {
                        f.mContainer.endViewTransition(f.mView);
                        f.mView.clearAnimation();
                        FragmentManagerImpl.AnimationOrAnimator anim = null;
                        if (this.mCurState > 0 && !this.mDestroyed && f.mView.getVisibility() == 0 && f.mPostponedAlpha >= 0.0F) {
                            anim = this.loadAnimation(f, transit, false, transitionStyle);
                        }

                        f.mPostponedAlpha = 0.0F;
                        if (anim != null) {
                            this.animateRemoveFragment(f, anim, newState);
                        }

                        f.mContainer.removeView(f.mView);
                    }

                    f.mContainer = null;
                    f.mView = null;
                    f.mViewLifecycleOwner = null;
                    f.mViewLifecycleOwnerLiveData.setValue((Object)null);
                    f.mInnerView = null;
                    f.mInLayout = false;
                }
            case 1:
                if (newState < 1) {
                    if (this.mDestroyed) {
                        if (f.getAnimatingAway() != null) {
                            View v = f.getAnimatingAway();
                            f.setAnimatingAway((View)null);
                            v.clearAnimation();
                        } else if (f.getAnimator() != null) {
                            Animator animator = f.getAnimator();
                            f.setAnimator((Animator)null);
                            animator.cancel();
                        }
                    }

                    if (f.getAnimatingAway() == null && f.getAnimator() == null) {
                        if (DEBUG) {
                            Log.v("FragmentManager", "movefrom CREATED: " + f);
                        }

                        if (!f.mRetaining) {
                            // 执行framgnet的onDestroy周期方法
                            f.performDestroy();
                            this.dispatchOnFragmentDestroyed(f, false);
                        } else {
                            f.mState = 0;
                        }
                        // 执行framgnet的onDetach周期方法
                        f.performDetach();
                        this.dispatchOnFragmentDetached(f, false);
                        if (!keepActive) {
                            if (!f.mRetaining) {
                                this.makeInactive(f);
                            } else {
                                f.mHost = null;
                                f.mParentFragment = null;
                                f.mFragmentManager = null;
                            }
                        }
                    } else {
                        f.setStateAfterAnimating(newState);
                        newState = 1;
                    }
                }
            }
        }

        if (f.mState != newState) {
            Log.w("FragmentManager", "moveToState: Fragment state for " + f + " not updated inline; " + "expected state " + newState + " found " + f.mState);
            f.mState = newState;
        }

    }

继续从FragmentManagerImpl类的moveFragmentToExpectedState(f)方法中说起,该方法中又会继续调用moveToState方法,这个方法和上面的moveToState方法不同,这俩方法是同名不同参的方法,该方法中会根据fragment的mState自身的状态值和newState传过来的状态值进行比较来区分:当前fragment是走创建阶段的周期方法还是销毁阶段的周期方法,进一步再通过fragment的mState判断到底要走哪个fragment的周期方法,具体标注可看代码注释哦。

Fragment的7种状态(mState):

static final int INVALID_STATE = -1; // 作为null值的非法状态

static final int INITIALIZING = 0; // 没有被create

static final int CREATED = 1; // 已经create

static final int ACTIVITY_CREATED = 2; // Activity已经完成了create

static final int STOPPED = 3; // 完全创建,还没start

static final int STARTED = 4; // 已经create和start,还没有resume

static final int RESUMED = 5; // 已经完成create,start和resume

“回退栈”:BackStackRecord 出栈

我们最后说一下回退栈(FragmentManagerImpl的成员mBackStack),其实我们在cooimt操作时我们就已经设置了“回退栈”内的元素。重新看一下该部分代码:

// FragmentManagerImpl类:
    public boolean generateOps(ArrayList<BackStackRecord> records, ArrayList<Boolean> isRecordPop) {
        if (FragmentManagerImpl.DEBUG) {
            Log.v("FragmentManager", "Run: " + this);
        }

        records.add(this);
        isRecordPop.add(false);
        if (this.mAddToBackStack) {
            this.mManager.addBackStackState(this);
        }

        return true;
    }
    void addBackStackState(BackStackRecord state) {
        if (this.mBackStack == null) {
            this.mBackStack = new ArrayList();
        }

        this.mBackStack.add(state);
    }

我们回顾一下上面的逻辑,在执行BackStackRecord类(实现了OpGenerator接口)的方法generateOps时,就已经将当前的BackStackRecord入栈啦。而BackStackRecord出栈主要是调用如下几个方法:

  • popBackStack()
  • popBackStackImmediate()
  • popBackStack(int id/String name, int flags)
  • popBackStackImmediate(int id/String name, int flags)

PopBackStackState类 实现了 OpGenerator 接口,具体实现如下:

  • 参数 records 用来存放出栈的 BackStackRecord
  • 参数 isRecordPop 用来存放相应 BackStackRecord 是否为出栈(显然为 true)
  • 参数 name 表示出栈到相应 name 的 BackStackRecord
  • 参数 id 表示出栈到相应 id 的 BackStackRecord
  • 参数 flags (0 或者 POP_BACK_STACK_INCLUSIVE) POP_BACK_STACK_INCLUSIVE 如果参数 flags ==POP_BACK_STACK_INCLUSIVE 并且设置了 name 或者 id 那么,所有符合该 name 或者 id 的 BackStackRecord 都将被匹配,直到遇到一个不匹配的或者到达了栈底,然后出栈所有 BackStackRecord 直到最终匹配到的下标位置。否则只匹配第一次 name 或者 id 相符的 BackStackRecord,然后出栈所有 BackStackRecord 直到但不包括匹配到的下标位置。

若我们自己主动调用popBackStack两个方法之一,实际上就是调用了enqueueAction方法,并传入PopBackStackState类的新创建实例,而此时isRecordPop集合里存的值就是true。在上面部分分析中也说明了isRecordPop集合中存的元素对代码逻辑的影响。最后会导致界面显示的是上一个fragment视图。

如果 回退栈 mBackStack 为空就终止出栈操作并返回 false,当name == null && id < 0 && (flags & POP_BACK_STACK_INCLUSIVE) == 0 (调用的是popBackStack()方法)时,把返回栈最后一个 BackStackRecord出栈。当 name 或者 id 被指定的时候,倒序遍历 mBackStack ,如果遇到 name 或者 id 相符就退出循环,此时 index 为第一次匹配到的下标,如果flags==POP_BACK_STACK_INCLUSIVE 继续遍历返回栈,直至栈底或者遇到不匹配的跳出循环。最后出栈所有 BackStackRecord。

总结

  • show/hideFragment只是改变fragment根View的visibility,最多带上个动画效果,另外只有本身是hidden的fragment,调用show才起作用,否则没用的,fragment.onHiddenChanged会被触发;其次不会有生命周期callback触发,当然了这些操作的前提是已经被add了的fragment;
  • add Fragment的时候,不管加不加入回退栈都一样,经历的生命周期如下:onAttach、onCreate、onCreateView、onActivityCreate、onStart、onResume;
  • removeFragment的时候,经历的生命周期如下:onPause、onStop、onDestroyView,如果不加回退栈还会继续走onDestroy、onDetach;remove的时候不仅从mAdded中移除fragment,也从mActive中移除了
  • attach/detach Fragment的前提都是已经add了的fragment,其生命周期回调不受回退栈影响。attach的时候onCreateView、onActivityCreate、onStart、onResume会被调用;detach的时候onPause、onStop、onDestroyView会被调用,onDestroy、onDetach不会被调用;对应的fragment只是从mAdded中移除了;

Fragment State Loss

Fragment过渡动画