Java锁之ReentrantLock(一)

4,643 阅读5分钟

一、ReenTrantLock结构

图1-1

根据上图可以知道,ReenTrantLock继承了Lock接口,Lock接口声明方法如下:

方法名 说明 抛出异常
lock() 一直阻塞获取锁,直到获取成功
lockInterruptibly() 尝试获取锁,直到获取锁或者线程被中断 InterruptedException
tryLock() 尝试获取空闲的锁,获取成功返回true,获取失败返回false,不会阻塞,立即返回
tryLock(long time, TimeUnit unit) 尝试在time时间内获取空闲的锁,在等待时间内可以被中断 InterruptedException
unlock() 释放锁
newCondition() 返回当前锁的一个condition实例,用于条件性等待

二、Lock的实现类ReentrantLock

1.ReentrantLock的部分方法

图2-1

  • 根据图2-1可以知道 Sync对象提供了所有的实现机制,而Sync继承了AbstractQueuedSynchronizer
  • NonfairSync 不公平锁,继承了Sync
  • FairSync 公平同步,继承了Sync

1. Sync


Sync是NonfairSync 和FairSync 的父类,声明方法如下:

      /**
       * 抽象方法,获取锁
       */
      abstract void lock();

      /**
       * 实现非公平锁获取逻辑
       */
      final boolean  nonfairTryAcquire(int acquires) {
          final Thread current = Thread.currentThread();
          int c = getState(); //父类同步器方法,获取当前同步状态,后续文章会分析
          if (c == 0) {//状态等于0表示没有获取到锁
              if (compareAndSetState(0, acquires)) { //CAS方式修改状态
                  setExclusiveOwnerThread(current); //修改成功后设置当前线程为锁的所有者
                  return true;
              }
          }
          else if (current == getExclusiveOwnerThread()) {//当前锁已被占用,判断是不是自己获取到了锁,锁重入
              int nextc = c + acquires; //获取锁的计数器
              if (nextc < 0) // overflow //因为是int类型,如果超过int最大值会溢出为负
                  throw new Error("Maximum lock count exceeded");
              setState(nextc);//设置计数器为状态值
              return true;
          }
          return false;
      }

      protected final boolean tryRelease(int releases) {
          int c = getState() - releases;//释放锁,同步状态减int值
          if (Thread.currentThread() != getExclusiveOwnerThread())
              throw new IllegalMonitorStateException(); //如果当前相差不是锁的拥有者,抛出异常
          boolean free = false;
          if (c == 0) { //如果同步状态值为0,表示锁已经释放成功
              free = true; 
              setExclusiveOwnerThread(null); // 设置锁的拥有线程为null
          }
          setState(c);//重新赋值同步状态
          return free;
      }
      //判断当前线程是不是锁独占
      protected final boolean isHeldExclusively() {
        
          return getExclusiveOwnerThread() == Thread.currentThread();
      }
      //返回锁的ConditionObject实例
      final ConditionObject newCondition() {
          return new ConditionObject();
      }

      // Methods relayed from outer class
      //获取当前占有锁的线程
      final Thread getOwner() {
          return getState() == 0 ? null : getExclusiveOwnerThread();
      }
      //获取当前锁计数
      final int getHoldCount() {
          return isHeldExclusively() ? getState() : 0;
      }
      //判断是否获取到锁
      final boolean isLocked() {
          return getState() != 0; //可以知道判断获取锁的关键就是是否不等于0
      }

2. NonfairSync 非公平锁


 static final class NonfairSync extends Sync {
       private static final long serialVersionUID = 7316153563782823691L;

       /**
        * Performs lock.  Try immediate barge, backing up to normal
        * acquire on failure.
        */
       final void lock() {
           if (compareAndSetState(0, 1))//CAS获取锁
               setExclusiveOwnerThread(Thread.currentThread());
           else
               acquire(1);
       }

       protected final boolean tryAcquire(int acquires) {
           return nonfairTryAcquire(acquires);
       }
   }
  • 根据源码发现 非公平锁继承了Sync父类,由于锁的释放不存在公平与不公平,所以公平锁和非公平锁只实现各自获取锁的逻辑。根据非公平锁的源码发现,其内部只实现了lock()tryAcquire(int acquires)方法,其中和tryAcquire(int acquires)方法直接调用了父类的nonfairTryAcquire(acquires),介绍父类的时候已经解析过,不清楚可以看上文Sync解析部分。根据lock源码发现,开始判断是否是第一次获取锁,如果获取锁成功,就把当前线程设置为锁的占有者,否则调用父类的acquire(1)方法(下一篇介绍同步器会介绍)。

3. FairSync 公平锁


 static final class FairSync extends Sync {
        private static final long serialVersionUID = -3000897897090466540L;
        /**调用父类的acquire()方法*/
        final void lock() {
            acquire(1);
        }

        /**
         * 尝试获取锁
         */
        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }
  • 根据上面代码发现公平锁的获取代码和非公平锁获取锁代码很相识,公平锁只多了一个 !hasQueuedPredecessors()判断,其实该方法就是判断是否有比当前线程等待最长时间的线程,如果没有,那么就尝试获取锁,获取成功后设置当前线程为锁的占有者,所以,公平与不公平就是是否按照时间等待来获取锁的,比如食堂吃饭,排队一个个来,这就是公平,如果有人插队,这就是不公平。

3. ReentrantLock 其他方法


 public ReentrantLock() {
        sync = new NonfairSync();
    }
public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }
  public void lock() {
        sync.lock();
    }
 public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);
    }
public boolean tryLock() {
        return sync.nonfairTryAcquire(1);
    }
    //指定超时时间内获取锁,阻塞时间为timeout
 public boolean tryLock(long timeout, TimeUnit unit)
            throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(timeout));
    }
 public Condition newCondition() {
        return sync.newCondition();
    }
public int getHoldCount() {
        return sync.getHoldCount();
    }
  public boolean isHeldByCurrentThread() {
        return sync.isHeldExclusively();
    }
 public final boolean isFair() {
        return sync instanceof FairSync;
    }
protected Thread getOwner() {
        return sync.getOwner();
    }
public final boolean hasQueuedThreads() {
        return sync.hasQueuedThreads();
    }
  public final boolean hasQueuedThread(Thread thread) {
        return sync.isQueued(thread);
    }
public final int getQueueLength() {
        return sync.getQueueLength();
    }
protected Collection<Thread> getQueuedThreads() {
        return sync.getQueuedThreads();
    }
 public boolean hasWaiters(Condition condition) {
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
    }
   public int getWaitQueueLength(Condition condition) {
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
    }
    protected Collection<Thread> getWaitingThreads(Condition condition) {
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

  • 其实根据上面源码发现,不管是实现LOCK接口的方法,还是后续新增的方法,其实现功能都依托于一个对象,那就是sync,在介绍sync时候已经说过,它就是继承了AbstractQueuedSynchronizer同步器,很多方法都是直接调用父类同步器的方法,下一篇《java锁之ReentrantLock(二)》会重点解析AbstractQueuedSynchronizer同步器源码,分析同步器是如何依托于FIFO队列完成锁的机制。

三、 总结

  • ReentrantLock实现了LOCK接口
  • ReentrantLock可以实现公平锁和非公平锁获取
  • ReentrantLock可以进行超时时间内获取锁
  • ReentrantLock可以进行条件等待和唤醒
  • ReentrantLock可以获取锁响应中断