阅读 1786

世界杯:用Python分析热门夺冠球队-(附源代码)

原文链接: mp.weixin.qq.com

2018年,火热的世界杯即将拉开序幕。在比赛开始之前,我们不妨用 Python 来对参赛队伍的实力情况进行分析,并大胆的预测下本届世界杯的夺冠热门球队。

文中有获取本文源代码的方式。

通过数据分析,可以发现很多有趣的结果,比如:

找出哪些队伍是首次进入世界杯的黑马队伍

找出2018年32强中之前已经进入过世界杯,但在世界杯上没有赢得过一场比赛的队伍

当然,我们本次的主要任务是要通过数据分析来预测2018年世界杯的夺冠热门队伍。

本次分析的数据来源于 Kaggle, 包含从 1872 年到今年的数据,包括世界杯比赛、世界杯预选赛、亚洲杯、欧洲杯、国家之间的友谊赛等比赛,一共大约 40000 场比赛的情况。

本次的环境为

window 7 系统

python 3.6

Jupyter Notebook

pandas version 0.22.0

先来看看数据的情况:

%matplotlib inlineimport pandas as pdimport matplotlib.pyplot as pltplt.style.use('ggplot')df = pd.read_csv('results.csv')df.head()复制代码

该数据集包含的数据列的信息如下:

日期

主队名称

客队名称

主队进球数 (不含点球)

客队进球数 (不含点球)

比赛的类型

比赛所在城市

比赛所在国家

是否中立

结果如下:

1、 获取所有世界杯比赛的数据(不含预选赛)

本文会有很多的pandas的使用,对此不熟悉的朋友可以查看之前我分享的《使用Pandas更好的做数据科学》,重新复习复习。

df_FIFA_all = df[df['tournament'].str.contains('FIFA', regex=True)]df_FIFA = df_FIFA_all[df_FIFA_all['tournament']=='FIFA World Cup']df_FIFA.head()复制代码

结果如下:

数据做一个初步整理,

df_FIFA.loc[:,'date'] = pd.to_datetime(df_FIFA.loc[:,'date'])df_FIFA['year'] = df_FIFA['date'].dt.yeardf_FIFA['diff_score'] = df_FIFA['home_score']-df_FIFA['away_score']df_FIFA['win_team'] = ''df_FIFA['diff_score'] = pd.to_numeric(df_FIFA['diff_score'])复制代码

创建一个新的列数据,包含获胜队伍的信息

# The first method to get the winnersdf_FIFA.loc[df_FIFA['diff_score']> 0, 'win_team'] = df_FIFA.loc[df_FIFA['diff_score']> 0, 'home_team']df_FIFA.loc[df_FIFA['diff_score']< 0, 'win_team'] = df_FIFA.loc[df_FIFA['diff_score']< 0, 'away_team']df_FIFA.loc[df_FIFA['diff_score']== 0, 'win_team'] = 'Draw'df_FIFA.head()# The second method to get the winnersdef find_win_team(df):    winners = []    for i, row in df.iterrows():        if row['home_score'] > row['away_score']:            winners.append(row['home_team'])        elif row['home_score'] < row['away_score']:            winners.append(row['away_team'])        else:            winners.append('Draw')    return winners        df_FIFA['winner'] = find_win_team(df_FIFA)df_FIFA.head()复制代码

结果如下:

2、 获取世界杯所有比赛的前20强数据情况

2.1 获取世界杯所有比赛获胜场数最多的前20强数据
s = df_FIFA.groupby('win_team')['win_team'].count()s.sort_values(ascending=False, inplace=True)s.drop(labels=['Draw'], inplace=True)复制代码

用pandas可视化如下:

柱状图

s.head(20).plot(kind='bar', figsize=(10,6), title='Top 20 Winners of World Cup')复制代码

水平柱状图

s.sort_values(ascending=True,inplace=True)s.tail(20).plot(kind='barh', figsize=(10,6), title='Top 20 Winners of World Cup')复制代码

饼图

s_percentage = s/s.sum()s_percentages_percentage.tail(20).plot(kind='pie', figsize=(10,10), autopct='%.1f%%',startangle=173, title='Top 20 Winners of World Cup', label='')复制代码

分析结论1:

从赢球场数来看,巴西、德国、意大利、阿根廷四支球队实力最强。

通过上面的分析,我们还可以来查看部分国家的获胜情况

s.get('China', default = 'NA')s.get('Japan', default = 'NA')s.get('Korea DPR', default = 'NA')s.get('Korea Republic', default = 'NA')s.get('Egypt', default = 'NA')复制代码

运行结果分别是 ‘NA’,4,1,5,‘NA’。

从结果来看,中国队,在世界杯比赛上(不含预选赛)还没有赢过。当然,本次世界杯的黑马-埃及队,之前两度进入世界杯上,但也没有赢过~~

上面分析的是赢球场数的情况,下面我们来看下进球总数情况。

2.2 各个国家队进球总数量情况

df_score_home = df_FIFA[['home_team', 'home_score']]column_update = ['team', 'score']df_score_home.columns = column_updatedf_score_away = df_FIFA[['away_team', 'away_score']]df_score_away.columns = column_updatedf_score = pd.concat([df_score_home,df_score_away], ignore_index=True)s_score = df_score.groupby('team')['score'].sum()s_score.sort_values(ascending=False, inplace=True)s_score.sort_values(ascending=True, inplace=True)s_score.tail(20).plot(kind='barh', figsize=(10,6), title='Top 20 in Total Scores of World Cup')复制代码

分析结论2:

从进球总数量来看,德国、巴西、阿根廷、意大利四支球队实力最强。

上面分析的是自1872年以来的所有球队的数据情况,下面,我们重点来分析下2018年世界杯32强的数据情况。

3、2018年世界杯32强分析

2018年世界杯的分组情况如下:

第一组:俄罗斯、德国、巴西、葡萄牙、阿根廷、比利时、波兰、法国

第二组:西班牙、秘鲁、瑞士、英格兰、哥伦比亚、墨西哥、乌拉圭、克罗地亚

第三组:丹麦、冰岛、哥斯达黎加、瑞典、突尼斯、埃及、塞内加尔、伊朗

第四组:塞尔维亚、尼日利亚、澳大利亚、日本、摩洛哥、巴拿马、韩国、沙特阿拉伯

获取32强的所有数据

首先,判断是否有队伍首次打入世界杯。

team_list = ['Russia', 'Germany', 'Brazil', 'Portugal', 'Argentina', 'Belgium', 'Poland', 'France',             'Spain', 'Peru', 'Switzerland', 'England', 'Colombia', 'Mexico', 'Uruguay', 'Croatia',            'Denmark', 'Iceland', 'Costa Rica', 'Sweden', 'Tunisia', 'Egypt', 'Senegal', 'Iran',            'Serbia', 'Nigeria', 'Australia', 'Japan', 'Morocco', 'Panama', 'Korea Republic', 'Saudi Arabia']for item in team_list:    if item not in s_score.index:        print(item)复制代码

out:

Iceland

Panama

通过上述分析可知,冰岛队和巴拿马队是首次打入世界杯的。

由于冰岛队和巴拿马队是首次进入世界杯,所以这里的32强数据,事实上是没有这两支队伍的历史数据的。

df_top32 = df_FIFA[(df_FIFA['home_team'].isin(team_list))&(df_FIFA['away_team'].isin(team_list))]复制代码

3.1 自1872年以来,32强数据情况

赢球场数情况
s_32 = df_top32.groupby('win_team')['win_team'].count()s_32.sort_values(ascending=False, inplace=True)s_32.drop(labels=['Draw'], inplace=True)s_32.sort_values(ascending=True,inplace=True)s_32.plot(kind='barh', figsize=(8,12), title='Top 32 of World Cup since year 1872')复制代码

进球数据情况
df_score_home_32 = df_top32[['home_team', 'home_score']]column_update = ['team', 'score']df_score_home_32.columns = column_updatedf_score_away_32 = df_top32[['away_team', 'away_score']]df_score_away_32.columns = column_updatedf_score_32 = pd.concat([df_score_home_32,df_score_away_32], ignore_index=True)s_score_32 = df_score_32.groupby('team')['score'].sum()s_score_32.sort_values(ascending=False, inplace=True)s_score_32.sort_values(ascending=True, inplace=True)s_score_32.plot(kind='barh', figsize=(8,12), title='Top 32 in Total Scores of World Cup since year 1872')复制代码

分析结论3:

自1872年以来,32强之间的世界杯比赛,从赢球场数和进球数量来看,德国、巴西、阿根廷三支球队实力最强。

自1872年到现在,已经有100多年,时间跨度较大,有些国家已发生重大变化,后续分别分析自1978年(近10届)以及2002年(近4届)以来的比赛情况。

程序代码是类似的,这里只显示可视化的结果。

3.2 自1978年以来,32强数据情况

赢球场数情况

进球数据情况

分析结论4:

自1978年以来,32强之间的世界杯比赛,从赢球场数来看,阿根廷、德国、巴西三支球队实力最强。

从进球数量来看,前3强也是这三支球队,但德国队的数据优势更明显。

3.3 自2002年以来,32强数据情况

赢球场数情况

进球数据情况

分析结论5:

自2002年以来,32强之间的世界杯比赛,从赢球场数和进球数量来看,德国、阿根廷、巴西三支球队实力最强。其中,德国队的数据优势更明显。

4、综合结论

2018年世界杯的32支队伍,根据以往的世界杯比赛数据来看,预测前三强为 德国、阿根廷和巴西,其中德国队应该是夺冠的最大热门。

特别说明:以上数据分析,纯属个人学习用,预测结果与实际情况可能偏差很大,不能用于其他用途。

本文是一次比较综合的项目实战,希望可以给大家带来一些启发。 

代码下载

长按【公众号:Python数据之道】的二维码关注后回复关键词 PyDataRoad

即可获得本文代码。

Python数据之道

Making Data More Valuable