阅读 24

语音识别技术

语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。

简介:

语音识别技术的应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。语音识别技术与其他自然语言处理技术如机器翻译及语音合成技术相结合,可以构建出更加复杂的应用,例如语音到语音的翻译。

语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。

历史:

早在计算机发明之前,自动语音识别的设想就已经被提上了议事日程,早期的声码器可被视作语音识别及合成的雏形。而1920年代生产的"Radio Rex"玩具狗可能是最早的语音识别器,当这只狗的名字被呼唤的时候,它能够从底座上弹出来。最早的基于电子计算机的语音识别系统是由AT&T贝尔实验室开发的Audrey语音识别系统,它能够识别10个英文数字。其识别方法是跟踪语音中的共振峰。该系统得到了98%的正确率。到1950年代末,伦敦学院(College of London)的Denes已经将语法概率加入语音识别中。

1960年代,人工神经网络被引入了语音识别。这一时代的两大突破是线性预测编码Linear Predictive Coding (LPC), 及动态时间规整Dynamic Time Warp技术。

语音识别技术的最重大突破是隐马尔科夫模型Hidden Markov Model的应用。从Baum提出相关数学推理,经过Labiner等人的研究,卡内基梅隆大学的李开复最终实现了第一个基于隐马尔科夫模型的大词汇量语音识别系统Sphinx。。此后严格来说语音识别技术并没有脱离HMM框架。
尽管多年来研究人员一直尝试将“听写机”推广,语音识别技术在目前还无法支持无限领域,无限说话人的听写机应用。

原理:

语音识别系统提示客户在新的场合使用新的口令密码,这样使用者不需要记住固定的口令,系统也不会被录音欺骗。文本相关的声音识别方法可以分为动态时间伸缩或隐马尔可夫模型方法。文本无关声音识别已经被研究很长时间了,不一致环境造成的性能下降是应用中的一个很大的障碍。

其工作原理:
动态时间伸缩方法使用瞬间的、变动倒频。1963年Bogert et al出版了《回声的时序倒频分析》。通过交换字母顺序,他们用一个含义广泛的词汇定义了一个新的信号处理技术,倒频谱的计算通常使用快速傅立叶变换。
从1975年起,隐马尔可夫模型变得很流行。运用隐马尔可夫模型的方法,频谱特征的统计变差得以测量。文本无关语音识别方法的例子有平均频谱法、矢量量化法和多变量自回归法。
平均频谱法使用有利的倒频距离,语音频谱中的音位影响被平均频谱去除。使用矢量量化法,语者的一套短期训练的特征向量可以直接用来描绘语者的本质特征。但是,当训练向量的数量很大时,这种直接的描绘是不切实际的,因为存储和计算的量变得离奇的大。所以尝试用矢量量化法去寻找有效的方法来压缩训练数据。Montacie et al在倒频向量的时序中应用多变量自回归模式来确定语者特征,取得了很好的效果。
想骗过语音识别系统要有高质量的录音机,那不是很容易买到的。一般的录音机不能记录声音的完整频谱,录音系统的质量损失也必须是非常低的。对于大多数的语音识别系统,模仿的声音都不会成功。用语音识别来辨认身份是非常复杂的,所以语音识别系统会结合个人身份号码识别或芯片卡。
语音识别系统得益于廉价的硬件设备,大多数的计算机都有声卡和麦克风,也很容易使用。但语音识别还是有一些缺点的。语音随时间而变化,所以必须使用生物识别模板。语音也会由于伤风、嗓音沙哑、情绪压力或是青春期而变化。语音识别系统比指纹识别系统有着较高的误识率,因为人们的声音不像指纹那样独特和唯一。对快速傅立叶变换计算来说,系统需要协同处理器和比指纹系统更多的效能。目前语音识别系统不适合移动应用或以电池为电源的系统。
了解关于语音识别技术的内容:
人工智能智能语音交互技术与应用

(课程主要讲解人工智能 智能语音相关技术,包括语音识别、人机交互、语音合成等)

更多精品课程:

7天玩转云服务器

云数据库的Redis版使用教程

玩转云存储对象存储OSS使用入门

阿里云CDN使用教程

负载均衡入门与产品使用指南

阿里云大学官网(阿里云大学 - 官方网站,云生态下的创新人才工场