Android 流畅度检测原理简析

9,274 阅读6分钟

android在不同的版本都会优化“UI的流畅性”问题,但是直到在android 4.1版本中做了有效的优化,这就是Project Butter。

Project Butter加入了三个核心元素:VSYNC、Triple Buffer和Choreographer。其中,VSYNC是理解Project Buffer的核心。VSYNC是Vertical Synchronization的缩写 也就是“垂直同步”

  • VSYNC:产生一个中断信号
  • Triple Buffer:当双Buffer不够使用时,该系统可分配第三块Buffer
  • Choreographer:这个了用来接受一个VSYNC信号来统一协调UI更新

检测应用卡顿的方案,Android系统每隔16.6ms发出VSYNC信号,来通知界面进行输入、动画、绘制等动作,每一次同步的周期为16.6ms,代表一帧的刷新频率,理论上来说两次回调的时间周期应该在16.6ms,如果超过了16.6ms我们则认为发生了卡顿,利用两次回调间的时间周期来判断是否发生卡顿 这个方案的原理主要是通过Choreographer类设置它的FrameCallback函数,当每一帧被渲染时会触发回调FrameCallback, FrameCallback回调void doFrame (long frameTimeNanos)函数。一次界面渲染会回调doFrame方法,如果两次doFrame之间的间隔大于16.6ms说明发生了卡顿。

监控应用的流畅度一般都是通过Choreographer类的postFrameCallback方法注册一个VSYNC回调事件

public static void start(final Builder builder) {
        Choreographer.getInstance().postFrameCallback(new Choreographer.FrameCallback() {
            long lastFrameTimeNanos = 0;
            long currentFrameTimeNanos = 0;

            @Override
            public void doFrame(long frameTimeNanos) {
                if (lastFrameTimeNanos == 0) {
                    lastFrameTimeNanos = frameTimeNanos;
                    LogMonitor.getInstance().setFrequency(builder.frame * 17 / 2);
                    if (builder.targetPackageName != null) {
                        LogMonitor.getInstance().setTargetPackageName(builder.targetPackageName);
                    }
                    LogMonitor.getInstance().setDumpListener(builder.onDumpListener);
                }
                currentFrameTimeNanos = frameTimeNanos;
                skipFrameCount = skipFrameCount(lastFrameTimeNanos, currentFrameTimeNanos, deviceRefreshRateMs);
                LogMonitor.getInstance().setFrame(skipFrameCount);
                if (LogMonitor.getInstance().isMonitor()) {
                    LogMonitor.getInstance().removeMonitor();
                }
                LogMonitor.getInstance().startMonitor();
                lastFrameTimeNanos = currentFrameTimeNanos;
                Choreographer.getInstance().postFrameCallback(this);
            }
        });
    }

postFrameCallback(FrameCallback callback)的源码

 public void postFrameCallback(FrameCallback callback) {
        postFrameCallbackDelayed(callback, 0);
    }
......
 public void postFrameCallbackDelayed(FrameCallback callback, long delayMillis) {
        if (callback == null) {
            throw new IllegalArgumentException("callback must not be null");
        }

        postCallbackDelayedInternal(CALLBACK_ANIMATION,
                callback, FRAME_CALLBACK_TOKEN, delayMillis);
    }

postFrameCallback最终调用了postCallbackDelayedInternal()方法,我们在跟踪进去这个方法

postCallbackDelayedInternal()
 private void postCallbackDelayedInternal(int callbackType,
            Object action, Object token, long delayMillis) {
        if (DEBUG_FRAMES) {
            Log.d(TAG, "PostCallback: type=" + callbackType
                    + ", action=" + action + ", token=" + token
                    + ", delayMillis=" + delayMillis);
        }

        synchronized (mLock) {
            final long now = SystemClock.uptimeMillis();
            final long dueTime = now + delayMillis;
            mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);

            if (dueTime <= now) {
                scheduleFrameLocked(now);
            } else {
                Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
                msg.arg1 = callbackType;
                msg.setAsynchronous(true);
                mHandler.sendMessageAtTime(msg, dueTime);
            }
        }
    }

postCallbackDelayedInternal方法中首选通过 mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);将我们注册的回调接口添加到mCallbackQueues队列中。每种类型的callback按照设置的执行时间(dueTime)顺序排序分别保存在一个单链表中。

之后判断执行时间是否为当前时间,如果是直接调用scheduleFrameLocked(now);否则发送一个MSG_DO_SCHEDULE_CALLBACK一个消息,其实发送信息最后也是调用scheduleFrameLocked(now)方法,所以我们直接看这个方法的代码

scheduleFrameLocked
   private void scheduleFrameLocked(long now) {
        if (!mFrameScheduled) {
            mFrameScheduled = true;
            if (USE_VSYNC) {//默认为true
                if (DEBUG_FRAMES) {
                    Log.d(TAG, "Scheduling next frame on vsync.");
                }

                // If running on the Looper thread, then schedule the vsync immediately,
                // otherwise post a message to schedule the vsync from the UI thread
                // as soon as possible.
                if (isRunningOnLooperThreadLocked()) { //是否是主线程
                    scheduleVsyncLocked();
                } else {//发消息给主线程
                    Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
                    msg.setAsynchronous(true);
                    mHandler.sendMessageAtFrontOfQueue(msg);
                }
            } else {
                final long nextFrameTime = Math.max(
                        mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now);
                if (DEBUG_FRAMES) {
                    Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms.");
                }
                Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
                msg.setAsynchronous(true);
                mHandler.sendMessageAtTime(msg, nextFrameTime);
            }
        }
    }

USE_VSYNC 默认是 true,表示默认开启垂直同步

private static final boolean USE_VSYNC = SystemProperties.getBoolean(
        "debug.choreographer.vsync", true);

scheduleVsyncLocked方法的代码

private void scheduleVsyncLocked() {
        mDisplayEventReceiver.scheduleVsync();
    }
......
/**
     * Schedules a single vertical sync pulse to be delivered when the next
     * display frame begins.
     */
    public void scheduleVsync() {
        if (mReceiverPtr == 0) {
            Log.w(TAG, "Attempted to schedule a vertical sync pulse but the display event "
                    + "receiver has already been disposed.");
        } else {
            nativeScheduleVsync(mReceiverPtr);
        }
    }

最终通过调native方法nativeScheduleVsync(mReceiverPtr)向底层注册我们的回调事件。 到此我们向系统注册“垂直同步”事件的流程已经结束。所有的流程如下:

image

接收VSYNS信号

VSYNC信号怎么同步到我们的代码的呢,Java 层接收 VSYNC 的入口是 dispatchVsync(),也就是说每当系统底层产生一个VSYNC信号,系统都会回调这个方法。

dispatchVsync()
  // Called from native code.
    @SuppressWarnings("unused")
    private void dispatchVsync(long timestampNanos, int builtInDisplayId, int frame) {
        onVsync(timestampNanos, builtInDisplayId, frame);
    }
 private final class FrameDisplayEventReceiver extends DisplayEventReceiver
            implements Runnable {
        private boolean mHavePendingVsync;
        private long mTimestampNanos;
        private int mFrame;

        public FrameDisplayEventReceiver(Looper looper, int vsyncSource) {
            super(looper, vsyncSource);
        }

        @Override
        public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
          ......
            mTimestampNanos = timestampNanos;
            mFrame = frame;
            Message msg = Message.obtain(mHandler, this);
            msg.setAsynchronous(true);
            mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
        }

        @Override
        public void run() {
            mHavePendingVsync = false;
            doFrame(mTimestampNanos, mFrame);
        }
    }

onVsync方法中,Message.obtain(mHandler, this) 所以 msg.callback 是 this,最后会调用到 msg.callback.run(),也就是 FrameDisplayEventReceiver run(),进入 doFrame() mTimestampNanos,它是来自 onVsync 的 timestampNanos 参数,代表产生 VSYNC 的时间

void doFrame(long frameTimeNanos, int frame) {
        final long startNanos;
        synchronized (mLock) {
            if (!mFrameScheduled) {
                return; // no work to do
            }

            if (DEBUG_JANK && mDebugPrintNextFrameTimeDelta) {
                mDebugPrintNextFrameTimeDelta = false;
                Log.d(TAG, "Frame time delta: "
                        + ((frameTimeNanos - mLastFrameTimeNanos) * 0.000001f) + " ms");
            }

            long intendedFrameTimeNanos = frameTimeNanos;
            startNanos = System.nanoTime();//正真开始的时间
            final long jitterNanos = startNanos - frameTimeNanos;
            if (jitterNanos >= mFrameIntervalNanos) {
                // 时间差除以每帧时间间隔,来计算丢掉了几帧。其中mFrameIntervalNanos = (long)(1000000000 / getRefreshRate());一般刷新率为60,时间间隔为16.6ms
                final long skippedFrames = jitterNanos / mFrameIntervalNanos;
                if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {
                    Log.i(TAG, "Skipped " + skippedFrames + " frames!  "
                            + "The application may be doing too much work on its main thread.");
                }
               // 取余数,作为帧偏移时间
                final long lastFrameOffset = jitterNanos % mFrameIntervalNanos;
                if (DEBUG_JANK) {
                    Log.d(TAG, "Missed vsync by " + (jitterNanos * 0.000001f) + " ms "
                            + "which is more than the frame interval of "
                            + (mFrameIntervalNanos * 0.000001f) + " ms!  "
                            + "Skipping " + skippedFrames + " frames and setting frame "
                            + "time to " + (lastFrameOffset * 0.000001f) + " ms in the past.");
                }
                frameTimeNanos = startNanos - lastFrameOffset;
            }

            if (frameTimeNanos < mLastFrameTimeNanos) {
                if (DEBUG_JANK) {
                    Log.d(TAG, "Frame time appears to be going backwards.  May be due to a "
                            + "previously skipped frame.  Waiting for next vsync.");
                }
                scheduleVsyncLocked();
                return;
            }

            mFrameInfo.setVsync(intendedFrameTimeNanos, frameTimeNanos);
            mFrameScheduled = false;
            mLastFrameTimeNanos = frameTimeNanos;
        }
       //执行对应的callBack        
        try {
            Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame");
            AnimationUtils.lockAnimationClock(frameTimeNanos / TimeUtils.NANOS_PER_MS);

            mFrameInfo.markInputHandlingStart();
            doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);

            mFrameInfo.markAnimationsStart();
            doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos);

            mFrameInfo.markPerformTraversalsStart();
            doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);

            doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos);
        } finally {
            AnimationUtils.unlockAnimationClock();
            Trace.traceEnd(Trace.TRACE_TAG_VIEW);
        }

        if (DEBUG_FRAMES) {
            final long endNanos = System.nanoTime();
            Log.d(TAG, "Frame " + frame + ": Finished, took "
                    + (endNanos - startNanos) * 0.000001f + " ms, latency "
                    + (startNanos - frameTimeNanos) * 0.000001f + " ms.");
        }
    }

如果你平时注意卡顿的日志信息,那么下面这个段log就不会陌生了

if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {
     Log.i(TAG, "Skipped " + skippedFrames + " frames!  "
                           + "The application may be doing too much work on its main thread.");

SKIPPED_FRAME_WARNING_LIMIT的默认值是30,也就说当我们的程序卡顿大于30时会打印这条log信息 doFrame()方法最后调用doCallbacks()来处理用户输入,动画,绘制等UI操作。

doCallbacks()方法
void doCallbacks(int callbackType, long frameTimeNanos) {
        CallbackRecord callbacks;
        synchronized (mLock) {
        // We use "now" to determine when callbacks become due because it's possible
            // for earlier processing phases in a frame to post callbacks that should run
            // in a following phase, such as an input event that causes an animation to start.
            final long now = System.nanoTime();
            callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked(
                    now / TimeUtils.NANOS_PER_MS);
            if (callbacks == null) {
                return;
            }
            mCallbacksRunning = true;
            ......
        try {
            Trace.traceBegin(Trace.TRACE_TAG_VIEW, CALLBACK_TRACE_TITLES[callbackType]);
            for (CallbackRecord c = callbacks; c != null; c = c.next) {
                if (DEBUG_FRAMES) {
                    Log.d(TAG, "RunCallback: type=" + callbackType
                            + ", action=" + c.action + ", token=" + c.token
                            + ", latencyMillis=" + (SystemClock.uptimeMillis() - c.dueTime));
                }
                c.run(frameTimeNanos);
            }
        } finally {
            synchronized (mLock) {
                mCallbacksRunning = false;
                do {
                    final CallbackRecord next = callbacks.next;
                    recycleCallbackLocked(callbacks);
                    callbacks = next;
                } while (callbacks != null);
            }
            Trace.traceEnd(Trace.TRACE_TAG_VIEW);
        }
    }

extractDueCallbacksLocked 是取出执行时间在当前时间之前的所有 CallbackRecord,CallbackRecord 是一个链表,然后遍历 callbacks 执行 run 方法

  private static final class CallbackRecord {
        public CallbackRecord next;
        public long dueTime;
        public Object action; // Runnable or FrameCallback
        public Object token;

        public void run(long frameTimeNanos) {
            if (token == FRAME_CALLBACK_TOKEN) {
                ((FrameCallback)action).doFrame(frameTimeNanos);
            } else {
                ((Runnable)action).run();
            }
        }
    }

如果们通过postFrameCallback(FrameCallback)注册回调事件,下一次 Choreographer doFrame 时就会调用 FrameCallback.doFrame,还记得刚开始我们注册FrameCallback是系统为封装FrameCallback的类型吗 正是FRAME_CALLBACK_TOKEN,因此这里会走 ((FrameCallback)action).doFrame(frameTimeNanos);,为什么我们每次都需要注册一个下呢,这是因为每次“垂直同步”都会删除调用的注册事件。 如果这个CallbackRecord是view动画或绘制就会调用((Runnable)action).run();

下面是收到VSYNC的流程图

image

小结
  1. Choreographer是线程单例的,而且必须要和一个Looper绑定,因为其内部有一个Handler需要和Looper绑定。
  2. 首先我们通过postFrameCallback(FrameCallback callback)方法,最终通过native方法 nativeScheduleVsync(mReceiverPtr)和一个VSYNC绑定。
  3. 当下一次VSYNC信号来时,回调我们绑定的接口,然后统计两针之间的时间,判断是否掉帧
  4. 如果掉帧获取卡顿日志,继续监控下个VSYNC信号