安卓复习之旅——消息机制

1,294 阅读6分钟
原文链接: blog.csdn.net

概述
安卓的消息机制主要是指handler的运行机制以及handler所附带的messageQueue和looper的工作过程,之所以会出现handler主要是因为安卓不允许非UI线程进行UI操作,这个在viewrootimpl中的checkThread()方法中进行了验证:

void checkThread() {
        if (mThread != Thread.currentThread()) {
            throw new CalledFromWrongThreadException(
                    "Only the original thread that created a view hierarchy can touch its views.");
        }
    }

下面就开始看看handler的运行机制是怎样的,在这之前我们得先了解一下threadlocal;

threadlocal

ThreadLocal是一个关于创建线程局部变量的类。 通常情况下,我们创建的变量是可以被任何一个线程访问并修改的。 而使用ThreadLocal创建的变量只能被当前线程访问,其他线程则无法访问和修改。
handler中的looper就保存在ThreadLocal中,这就保证了每个线程的looper对象互不干扰;threadlocal就先了解到这里,go on。

looper的工作原理

looper在安卓消息机制中扮演着消息循环的角色,它会一直监听着messageQueue,一旦messageQueue中有新消息就会立即处理。
先看一下looper的构造方法:

private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

在looper的构造方法中初始化了messageQueue并保存当前的线程对象,
我们知道handler的工作需要looper,那么是怎样得到looper的呢?首先在主线程中,我们不用手动去创建,因为在activitythread类中的main()方法已经帮我们创建好了:

public static void main(String[] args) {
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
        SamplingProfilerIntegration.start();

        ......

        Looper.prepareMainLooper();//创建looper对象

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

       ......

        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();//开始轮询
    }

在子线程中我们必须手动去调用looper.prepare()方法创建对象:

private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {//保证一个线程只有一个looper
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        //创建looper并保存到ThreadLocal中
        sThreadLocal.set(new Looper(quitAllowed));
    }

调用looper.loop()开启轮询监测messagequeue:

 public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        ......
//开始死循环监测消息
        for (;;) {
            Message msg = queue.next(); // 从MessageQueue 中读取消息当消息为null的时候跳出循环
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            try {//调用handler的dispatchMessage()方法处理消息
                msg.target.dispatchMessage(msg);
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }

            ......

            msg.recycleUnchecked();
        }
    }

MessageQueue 工作原理

MessageQueue 也就是我们常说的消息队列,它内部是采用单链表的数据结构来维护消息的,MessageQueue 主要包含插入enqueuemessage()和读取next()操作,其中读取操作伴随着删除操作;
插入操作:

boolean enqueueMessage(Message msg, long when) {
       ...
        synchronized (this) {
          ...
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            // 根据when的比较来判断要添加的Message是否应该放在队列头部。
            // 当第一次添加消息的时候,测试队列为空,所以该Message也应该
            // 位于队列的头部。
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                // 不断遍历消息队列,根据when的比较找到适合插入Message的位置。
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

将Message加入到消息队列中的操作也很简单,就是遍历消息队列中的所有消息,根据when的比较找到适合添加Message的位置。看一下next()方法:

Message next() {
        ...

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                     // 循环遍历出第一个异步消息,这段代码可以看出障栅会拦截所有的同步消息。
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                // 当Message还没到被执行时间的时候,记录下一次要执行该Message的时间点。
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // 从队列中取出该Message,并重新构建原来队列的链接。
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        // 标记该Message正处于使用状态,然后返回Message。
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                ...
        }
    }

可以发现next方法是一个无限循环的方法,如果队列中没有消息,就会一直阻塞在这里,当有新消息的时候,就返回这条消息并将消息从队列中移除;

handler的工作原理
handler既是消息的发送者,也是消息的消费者,作为发送者,它最后通过调用sendMessageAtTime()方法将消息发送出去,作为消费者,它通过调用dispatchMessage()来处理消息;
先看看sendMessageAtTime()方法:

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

发送消息的核心方法(所谓的发送消息其实就是把Message加入队列中),方法内部调用了MessageQueue.enqueueMessage(Message msg, long uptimeMillis)执行入列操作。

再看看dispatchMessage()方法:

 public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
        // callback实际上就是Runnable对象
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

handler处理消息的过程:
首先判断message的callback是否为null,不为null就执行andleCallback()方法;

 private static void handleCallback(Message message) {
        message.callback.run();
    }

然后判断mCallback 是否为null,不为null的话,就执行mCallback 的
handleMessage()方法,Callback是一个接口;

public interface Callback {
        public boolean handleMessage(Message msg);
    }

通过Callback 可以这样创建handler,Handler h = new Handler(callback);用callback来创建handler的实例不需要派生出handler的子类;
最后调用handleMessage()方法,该方法可能被重写也可能是默认的,这都取决于你:

/**
     * Subclasses must implement this to receive messages.
     */
     //自己处理业务逻辑
    public void handleMessage(Message msg) {
    }

流程图:
这里写图片描述

主线程的消息循环

文章开始已经说过主线程在ActivityThread的main方法中已经为我们创建好了looper对象和messagequeue,然后ActivityThread还需要一个handler来与messagequeue进行交互,这个handler就是ActivityThread.H,它内部定义了一组消息类型,主要包括四大组件的启动和停止等过程;

 private class H extends Handler {
        public static final int LAUNCH_ACTIVITY         = 100;
        public static final int PAUSE_ACTIVITY          = 101;
        public static final int PAUSE_ACTIVITY_FINISHING= 102;
        public static final int STOP_ACTIVITY_SHOW      = 103;
        public static final int STOP_ACTIVITY_HIDE      = 104;
        public static final int SHOW_WINDOW             = 105;
        public static final int HIDE_WINDOW             = 106;
        public static final int RESUME_ACTIVITY         = 107;
        public static final int SEND_RESULT             = 108;
        public static final int DESTROY_ACTIVITY        = 109;
        public static final int BIND_APPLICATION        = 110;
        public static final int EXIT_APPLICATION        = 111;
        public static final int NEW_INTENT              = 112;
        public static final int RECEIVER                = 113;
        public static final int CREATE_SERVICE          = 114;
        public static final int SERVICE_ARGS            = 115;
        public static final int STOP_SERVICE            = 116;

ActivityThread通过applicationthread和AMS进行进程间的通信,AMS以进程间的通信完成ActivityThread的请求后会回调ActivityThread的Biner方法,然后applicationthread会向H发送消息,H收到消息后会将applicationthread中的逻辑切换到ActivityThread中去执行,即切换到主线程中,这个过程就是主线程的消息循环模型。