Android中的消息处理机制概述
大家对于Android中的消息处理机制的用法一定都比较熟悉,至于工作原理估计不少人有研究。就像我们自己写的类我们用起来比较熟悉一样,如果我们熟悉了消息处理机制的具体实现,那么我们用起来肯定也会事半功倍。
博主之前只是稍有涉猎,对其中一些地方也还心存疑虑,比如既然Looper.loop()里是一个死循环,那它会不会很消耗CPU呢?死循环阻塞了线程,那我们其他的事务是如何被处理的呢?Android的UI线程是在哪里被初始化的呢?等等。索性今天就把他们放到一起,说道说道。
Android中线程的分类
带有消息队列,用来执行循环性任务(例如主线程、android.os.HandlerThread)
没有消息队列,用来执行一次性任务(例如java.lang.Thread)
带有消息队列线程概述
四要素
Message(消息)
MessageQueue(消息队列)
Looper(消息循环)
Handler(消息发送和处理)
四要素的交互过程
具体工作过程
消息队列的创建
消息循环
消息的发送
最基本的两个API
Handler.sendMessage
Handler.post
- 带一个Runnable参数,会被转换为一个Message参数
消息的处理
基于消息的异步任务接口
android.os.HandlerThread
android.os.AyncTask
带有消息队列线程的具体实现
ThreadLocal
ThreadLocal并不是一个Thread,而是Thread的局部变量。当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。
从线程的角度看,目标变量就象是线程的本地变量,这也是类名中“Local”所要表达的意思。
Looper
用于在指定线程中运行一个消息循环,一旦有新任务则执行,执行完继续等待下一个任务,即变成Looper线程。Looper类的注释里有这样一个例子:
class LooperThread extends Thread {
public Handler mHandler;
public void run() {
//将当前线程初始化为Looper线程
Looper.prepare();
// ...其他处理,如实例化handler
mHandler = new Handler() {
public void handleMessage(Message msg) {
// process incoming messages here
}
};
// 开始循环处理消息队列
Looper.loop();
}
}
其实核心代码就两行,我们先来看下Looper.prepare()方法的具体实现
public final class Looper {
private static final String TAG = "Looper";
// sThreadLocal.get() will return null unless you've called prepare().
static final ThreadLocal sThreadLocal = new ThreadLocal();
private static Looper sMainLooper; // guarded by Looper.class
//Looper内的消息队列
final MessageQueue mQueue;
// 当前线程
final Thread mThread;
private Printer mLogging;
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
/** Initialize the current thread as a looper.
* This gives you a chance to create handlers that then reference
* this looper, before actually starting the loop. Be sure to call
* {@link #loop()} after calling this method, and end it by calling
* {@link #quit()}.
*/
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
//试图在有Looper的线程中再次创建Looper将抛出异常
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
/**
* Initialize the current thread as a looper, marking it as an
* application's main looper. The main looper for your application
* is created by the Android environment, so you should never need
* to call this function yourself. See also: {@link #prepare()}
*/
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
//~省略部分无关代码~
}
从中我们可以看到以下几点:
- prepare()其核心就是将looper对象定义为ThreadLocal
- 一个Thread只能有一个Looper对象
- prepare()方法会调用Looper的构造方法,初始化一个消息队列,并且指定当前线程
- 在调用Looper.loop()方法之前,确保已经调用了prepare(boolean quitAllowed)方法,并且我们可以调用quite方法结束循环
说到初始化MessageQueue,我们来看下它是干什么的
/**
* Low-level class holding the list of messages to be dispatched by a
* {@link Looper}. Messages are not added directly to a MessageQueue,
* but rather through {@link Handler} objects associated with the Looper.
*
*You can retrieve the MessageQueue for the current thread with
* {@link Looper#myQueue() Looper.myQueue()}.
*/
它是一个低等级的持有Messages集合的类,被Looper分发。Messages并不是直接加到MessageQueue的,而是通过Handler对象和Looper关联到一起。我们可以通过Looper.myQueue()方法来检索当前线程的MessageQueue。
接下来再看看Looper.loop()
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
//得到当前线程Looper
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
//得到当前looper的MessageQueue
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
//开始循环
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
//没有消息表示消息队列正在退出
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
//将真正的处理工作交给message的target,即handler
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
//回收消息资源
msg.recycleUnchecked();
}
}
通过这段代码可知,调用loop方法后,Looper线程就开始真正工作了,它不断从自己的MessageQueue中取出队头的消息(或者说是任务)执行。
除了prepare()和loop()方法,Looper类还有一些比较有用的方法,比如
Looper.myLooper()得到当前线程looper对象
getThread()得到looper对象所属线程
quit()方法结束looper循环
这里需要注意的一点是,quit()方法其实调用的是MessageWueue的quite(boolean safe)方法。
void quit(boolean safe) { if (!mQuitAllowed) { throw new IllegalStateException("Main thread not allowed to quit."); } synchronized (this) { if (mQuitting) { return; } mQuitting = true; if (safe) { removeAllFutureMessagesLocked(); } else { removeAllMessagesLocked(); } // We can assume mPtr != 0 because mQuitting was previously false. nativeWake(mPtr); } }
我们看到其实主线程是不能调用这个方法退出消息队列的。至于mQuitAllowed参数是在Looper初始化的时候初始化的,主线程初始化调用的是Looper.prepareMainLooper()方法,这个方法把参数设置为false。
Message
在整个消息处理机制中,message又叫task,封装了任务携带的信息和处理该任务的handler。我们看下这个类的注释
/**
*
* Defines a message containing a description and arbitrary data object that can be
* sent to a {@link Handler}. This object contains two extra int fields and an
* extra object field that allow you to not do allocations in many cases.
*
*While the constructor of Message is public, the best way to get
* one of these is to call {@link #obtain Message.obtain()} or one of the
* {@link Handler#obtainMessage Handler.obtainMessage()} methods, which will pull
* them from a pool of recycled objects.
*/
这个类定义了一个包含描述和一个任意类型对象的对象,它可以被发送给Handler。
从注释里我们还可以了解到以下几点:
尽管Message有public的默认构造方法,但是你应该通过Message.obtain()来从消息池中获得空消息对象,以节省资源。
如果你的message只需要携带简单的int信息,请优先使用Message.arg1和Message.arg2来传递信息,这比用Bundle更省内存
用message.what来标识信息,以便用不同方式处理message。
Handler
从MessageQueue的注释中,我们知道添加消息到消息队列是通过Handler来操作的。我们通过源码来看下具体是怎么实现的
/**
* A Handler allows you to send and process {@link Message} and Runnable
* objects associated with a thread’s {@link MessageQueue}. Each Handler
* instance is associated with a single thread and that thread’s message
* queue. When you create a new Handler, it is bound to the thread /
* message queue of the thread that is creating it – from that point on,
* it will deliver messages and runnables to that message queue and execute
* them as they come out of the message queue.
*
*There are two main uses for a Handler: (1) to schedule messages and
* runnables to be executed as some point in the future; and (2) to enqueue
* an action to be performed on a different thread than your own.
*
*/
注释比较简单,这里就不过多翻译了,主要内容是:每一个Handler实例关联了一个单一的ghread和这个thread的messagequeue,当Handler的实例被创建的时候它就被绑定到了创建它的thread。它用来调度message和runnables在未来某个时间点的执行,还可以排列其他线程里执行的操作。
public class Handler {
//~省略部分无关代码~
final MessageQueue mQueue;
final Looper mLooper;
public Handler() {
this(null, false);
}
public Handler(Looper looper) {
this(looper, null, false);
}
public Handler(boolean async) {
this(null, async);
}
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
//~省略部分无关代码~
}
先看构造方法,其实里边的重点是初始化了两个变量,把关联looper的MessageQueue作为自己的MessageQueue,因此它的消息将发送到关联looper的MessageQueue上。
有了handler之后,我们就可以使用Handler提供的post和send系列方法向MessageQueue上发送消息了。其实post发出的Runnable对象最后都被封装成message对象
接下来我们看一下handler是如何发送消息的
/**
* Causes the Runnable r to be added to the message queue.
* The runnable will be run on the thread to which this handler is
* attached.
*
* @param r The Runnable that will be executed.
*
* @return Returns true if the Runnable was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting.
*/
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
/**
* Enqueue a message into the message queue after all pending messages
* before (current time + delayMillis). You will receive it in
* {@link #handleMessage}, in the thread attached to this handler.
*
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting. Note that a
* result of true does not mean the message will be processed -- if
* the looper is quit before the delivery time of the message
* occurs then the message will be dropped.
*/
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
/**
* Enqueue a message into the message queue after all pending messages
* before the absolute time (in milliseconds) uptimeMillis.
* The time-base is {@link android.os.SystemClock#uptimeMillis}.
* Time spent in deep sleep will add an additional delay to execution.
* You will receive it in {@link #handleMessage}, in the thread attached
* to this handler.
*
* @param uptimeMillis The absolute time at which the message should be
* delivered, using the
* {@link android.os.SystemClock#uptimeMillis} time-base.
*
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting. Note that a
* result of true does not mean the message will be processed -- if
* the looper is quit before the delivery time of the message
* occurs then the message will be dropped.
*/
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
这里我们只列出了一种调用关系,其他调用关系大同小异,我们来分析一下
- 调用getPostMessage(r),把runnable对象添加到一个Message对象中。
- sendMessageDelayed(getPostMessage(r), 0),基本没做什么操作,又继续调用sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis)方法,在这个方法里拿到创建这个Handler对象的线程持有的MessageQueue。
- 调用enqueueMessage(queue, msg, uptimeMillis)方法,给msg对象的target变量赋值为当前的Handler对象,然后放入到MessageQueue。
那发送消息说完了,那我们的消息是怎样被处理的呢?
我们看到message.target为该handler对象,这确保了looper执行到该message时能找到处理它的handler,即loop()方法中的关键代码。
/**
* Callback interface you can use when instantiating a Handler to avoid
* having to implement your own subclass of Handler.
*
* @param msg A {@link android.os.Message Message} object
* @return True if no further handling is desired
*/
public interface Callback {
public boolean handleMessage(Message msg);
}
/**
* Subclasses must implement this to receive messages.
*/
public void handleMessage(Message msg) {
}
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
private static void handleCallback(Message message) {
message.callback.run();
}
我们看到这里最终又调用到了我们重写的handleMessage(Message msg)方法来做处理子线程发来的消息或者调用handleCallback(Message message)去执行我们子线程中定义并传过来的操作。
思考
为什么要有Handler机制
这个问题可以这么考虑
- 我们如何在子线程更新UI?——使用Handler机制传递消息到主线程(UI线程)
- 为什么我们不在子线程更新UI呢?——因为Android是单线程模型
- 为什么要做成单线程模型呢?——多线程并发访问UI可能会导致UI控件处于不可预期的状态。如果加锁,虽然能解决,但是缺点也很明显:1.锁机制让UI访问逻辑变得复杂;2.加锁导致效率低下。
Handler机制与命令模式
我在之前分享过Android源码中的命令模式,我们仔细分下一下不难看出Handler机制其实是一个非典型的命令模式。
接收者:Handler,执行消息处理操作。
调用者:Looper,调用消息的的处理方法。
命令角色:Message,消息类。
客户端:Thread,创建消息并绑定Handler(接受者)。
Android主线程是如何管理子线程消息的
我们知道Android上一个应用的入口,应该是ActivityThread。和普通的Java类一样,入口是一个main方法。
public static void main(String[] args) {
//~省略部分无关代码~
//创建Looper和MessageQueue对象,用于处理主线程的消息
Looper.prepareMainLooper();
//创建ActivityThread对象
ActivityThread thread = new ActivityThread();
//建立Binder通道 (创建新线程)
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
//消息循环运行
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
我们可以看到其实我们在这里初始化了我们主线程(UI)的Looper并且启动它。然后就可以处理子线程和其他组件发来的消息了。
为什么主线程不会因为Looper.loop()里的死循环卡死或者不能处理其他事务
这里涉及到的东西比较多,概括的理解是这样的
为什么不会卡死
handler机制是使用pipe来实现的,主线程没有消息处理时会阻塞在管道的读端。
binder线程会往主线程消息队列里添加消息,然后往管道写端写一个字节,这样就能唤醒主线程从管道读端返回,也就是说queue.next()会调用返回。
主线程大多数时候都是处于休眠状态,并不会消耗大量CPU资源。
既然是死循环又如何去处理其他事务呢?
答案是通过创建新线程的方式。
我们看到main方法里调用了thread.attach(false),这里便会创建一个Binder线程(具体是指ApplicationThread,Binder的服务端,用于接收系统服务AMS发送来的事件),该Binder线程通过Handler将Message发送给主线程。
ActivityThread对应的Handler是一个内部类H,里边包含了启动Activity、处理Activity生命周期等方法。