随着 LLM 赋能越来越多需要实时决策和响应的应用场景,以及用户体验不佳、成本过高、资源受限等问题的出现,大模型高效推理已成为一个重要的研究课题。为此,Baihai IDP 推出 Pierre Lienhart 的系列文章,从多个维度全面剖析 Transformer 大语言模型的推理过程,以期帮助读者对这个技术难点建立系统的理解,并在实践中做出正确的模型服务部署决策。
本文是该系列文章的第一篇,作者的核心观点是:透彻理解 Transformer 解码器的推理过程,是实现大语言模型高性能服务的基础。
作者通过解析文本生成的流程,明确了启动阶段和生成阶段的概念,并指出了键值缓存在其中起到的关键作用,为后续优化方法做好了理论铺垫。

作者:Baihai_IDP
链接:juejin.cn
来源:稀土掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
展开
评论