《数据结构与算法之美》11月day28
在基础篇中,关于“图”,我们讲了图的定义和存储、图的广度和深度优先搜索。今天,我们又讲了一个关于图的算法,拓扑排序。
拓扑排序应用非常广泛,解决的问题的模型也非常一致。凡是需要通过局部顺序来推导全局顺序的,一般都能用拓扑排序来解决。除此之外,拓扑排序还能检测图中环的存在。对于 Kahn 算法来说,如果最后输出出来的顶点个数,少于图中顶点个数,图中还有入度不是 0 的顶点,那就说明,图中存在环。
关于图中环的检测,我们在递归那一节讲过一个例子,在查找最终推荐人的时候,可能会因为脏数据,造成存在循环推荐,比如,用户 A 推荐了用户 B,用户 B 推荐了用户 C,用户 C 又推荐了用户 A。如何避免这种脏数据导致的无限递归?这个问题,我当时留给你思考了,现在是时候解答了。
实际上,这就是环的检测问题。因为我们每次都只是查找一个用户的最终推荐人,所以,我们并不需要动用复杂的拓扑排序算法,而只需要记录已经访问过的用户 ID,当用户 ID 第二次被访问的时候,就说明存在环,也就说明存在脏数据。