#青训营笔记创作活动# 问题描述
小F被神秘力量带入了一个魔幻世界,这里危机四伏。为了在异世界中生存,小F需要找到安全区。异世界可以被表示为一个大小为n x m的二维数组,每个格子的值代表该位置的危险程度。
小F的能力值为X,当某个格子的危险程度小于等于X时,这个格子是安全的。如果多个安全的格子相邻(上下左右连通),它们可以构成一个安全区。你需要帮助小F计算出一共有多少个安全区。
测试样例
样例1:
输入:n = 3, m = 3, X = 4, a = [[2, 3, 3], [3, 3, 3], [3, 3, 3]]
输出:1
样例2:
输入:n = 2, m = 2, X = 5, a = [[6, 6], [6, 4]]
输出:1
样例3:
输入:n = 3, m = 3, X = 3, a = [[1, 2, 2], [2, 3, 3], [3, 4, 5]]
输出:1
题解:
一个原二维数组,新建一个visited数组记录是否经过,直接全部遍历,遇到安全值小于能力值且没经过的点就进入while循环。while循环通过队列实现安全区域的搜寻,通过maxnum记录安全区域的个数。
#青训营笔记创作活动#
2月13日 打卡day5
今日学习了Kafka的科普文章
Kafka包括消息系统、存储系统和流式处理平台。一个典型的 Kafka 体系架构包括若干 Producer、若干 Broker、若干 Consumer,以及一个 ZooKeeper 集群,如图所示。其中 ZooKeeper 是 Kafka 用来负责集群元数据的管理、控制器 的选举等操作的。Producer 将消息发送到 Broker,Broker 负责将收到的消息存储到磁盘中,而 Consumer 负责从 Broker 订阅并消费消息。
在 Kafka 中还有两个特别重要的概念——主题(Topic)与分区(Partition)。Kafka 中的消息以 topic 题为单位进行归类,生产者负责将消息发送到特定的 topic (发送到 Kafka 集群中的每一条消息都要指定一个主题),而消费者负责订阅主题并进行消费。
在 Kafka 的消费理念中还有一层消费组(Consumer Group))的概念,每个消费者都有一个对应的消费组。当消息发布到主题后,只会被投递给订阅它的每个消费组中的一个消费者。
主题和分区都是提供给上层用户的抽象,而在副本层面或更加确切地说是 Log 层面才有实际物理上的存在。同一个分区中的多个副本必须分布在不同的 broker 中,这样才能提供有效的数据冗余。
Kafka 为分区引入了多副本(Replica)机制,通过增加副本数量可以提升容灾能力。同一分区的不同副本中保存的是相同的消息(在同一时刻,副本之间并非完全一样),副本之间是一主多从的关系,其中 leader 副本负责处理读写请求,follower 副本只负责与 leader 副本的消息同步。副本处于不同的 broker 中,当 leader 副本出现故障时,从 follower 副本中重新选举新的 leader 副本对外提供服务。Kafka 通过多副本机制实现了故障的自动转移,当 Kafka 集群中某个 broker 失效时仍然能保证服务可用。
2月13日 打卡day5
今日学习了Kafka的科普文章
Kafka包括消息系统、存储系统和流式处理平台。一个典型的 Kafka 体系架构包括若干 Producer、若干 Broker、若干 Consumer,以及一个 ZooKeeper 集群,如图所示。其中 ZooKeeper 是 Kafka 用来负责集群元数据的管理、控制器 的选举等操作的。Producer 将消息发送到 Broker,Broker 负责将收到的消息存储到磁盘中,而 Consumer 负责从 Broker 订阅并消费消息。
在 Kafka 中还有两个特别重要的概念——主题(Topic)与分区(Partition)。Kafka 中的消息以 topic 题为单位进行归类,生产者负责将消息发送到特定的 topic (发送到 Kafka 集群中的每一条消息都要指定一个主题),而消费者负责订阅主题并进行消费。
在 Kafka 的消费理念中还有一层消费组(Consumer Group))的概念,每个消费者都有一个对应的消费组。当消息发布到主题后,只会被投递给订阅它的每个消费组中的一个消费者。
主题和分区都是提供给上层用户的抽象,而在副本层面或更加确切地说是 Log 层面才有实际物理上的存在。同一个分区中的多个副本必须分布在不同的 broker 中,这样才能提供有效的数据冗余。
Kafka 为分区引入了多副本(Replica)机制,通过增加副本数量可以提升容灾能力。同一分区的不同副本中保存的是相同的消息(在同一时刻,副本之间并非完全一样),副本之间是一主多从的关系,其中 leader 副本负责处理读写请求,follower 副本只负责与 leader 副本的消息同步。副本处于不同的 broker 中,当 leader 副本出现故障时,从 follower 副本中重新选举新的 leader 副本对外提供服务。Kafka 通过多副本机制实现了故障的自动转移,当 Kafka 集群中某个 broker 失效时仍然能保证服务可用。
展开
评论
点赞