#青训营笔记创作活动#
1月16日 打卡day2
B-tree:因为B树不管叶子节点还是非叶子节点,都会保存数据,这样导致在非叶子节点中能保存的指针数量变少(有些资料也称为扇出),指针少的情况下要保存大量数据,只能增加树的高度,导致IO操作变多,查询性能变低;
Hash:虽然可以快速定位,但是没有顺序,IO复杂度高。
二叉树:树的高度不均匀,不能自平衡,查找效率跟数据有关(树的高度),并且IO代价高。
红黑树:树的高度随着数据量增加而增加,IO代价高。
不使用平衡二叉树的原因如下:
最大原因:深度太大(因为一个节点最多只有2个子节点),一次查询需要的I/O复杂度为O(lgN),而b+tree只需要O(log_mN),而其出度m非常大,其深度一般不会超过4 平衡二叉树逻辑上很近的父子节点,物理上可能很远,无法充分发挥磁盘顺序读和预读的高效特性。
1月16日 打卡day2
B-tree:因为B树不管叶子节点还是非叶子节点,都会保存数据,这样导致在非叶子节点中能保存的指针数量变少(有些资料也称为扇出),指针少的情况下要保存大量数据,只能增加树的高度,导致IO操作变多,查询性能变低;
Hash:虽然可以快速定位,但是没有顺序,IO复杂度高。
二叉树:树的高度不均匀,不能自平衡,查找效率跟数据有关(树的高度),并且IO代价高。
红黑树:树的高度随着数据量增加而增加,IO代价高。
不使用平衡二叉树的原因如下:
最大原因:深度太大(因为一个节点最多只有2个子节点),一次查询需要的I/O复杂度为O(lgN),而b+tree只需要O(log_mN),而其出度m非常大,其深度一般不会超过4 平衡二叉树逻辑上很近的父子节点,物理上可能很远,无法充分发挥磁盘顺序读和预读的高效特性。
展开
评论
点赞